
Monocular Depth Estimation with Generative Adversarial 
Networks
Depth maps are the most important element to gain the third dimension in various fields of application. They are usually
collected with active sensors or through image-based estimation methods. In both cases, additional depth-capable sensor or
camera poses are required to extrapolate the depth maps, which makes them less ubiquitous than normal RGB cameras. Aiming
to find a more universal solution, this thesis researches the task of estimating the depth directly from a single RGB image. After
the creation of a dataset, a generative adversarial networks structure is explored. To improve the estimations, diverse methods
are implemented, which can eventually generate better depth maps than low-cost depth-sensors.
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Data collection and post-processing
The dataset has been collected with different instruments ranging
from smartphone with Time-of-Flight camera or LiDAR sensor,
terrestrial laser scanning and multiple fixed cameras. The post-
processing operations for the dataset preparation includes: image
matching to extract the depth maps from the multiple fixed cameras’
images, the upsampling of the low-resolution LiDAR data through a
neural network with no quality loss and the equirectangular
projection of the spherical data generated with the laser scanner
(Fig. 1).

Fig. 1: Equirectangular projection of spherical data
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Generative Adversarial Networks structure
The Generative Adversarial Networks’ structure consists in a min-
max game between a generator, which is trained to generate the
depth maps conditioned bay the RGB-image distribution, and a
discriminator, which is simultaneously trained with the latter to
classify the presented depth maps as generated or true. The
implemented networks based the generator on a ResNeXt-101
backbone, which allowed the use of transfer learning to accelerate
the training process, and the discriminator on a simple
convolutional neural network.
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Testing result of the baseline
After the refinement, the created model has been tested on the
10% of the dataset, which was preserved before the training to test
the model on samples never seen during that step. The model was
able to reach a RMSE of 15.94 (6.25% on a intensity scale between
0 and 255) and an accuracy of 98%. The generated depth maps
present a good structural consistency and minor blurry or
incomplete zones in comparison to the ground truth (Fig. 3).

Training and validation
As the collected dataset is small for such a complex task, during the
iterative training process (Fig. 2), a data augmentation function was
implemented to randomly flip and crop the samples, and additional
open-source datasets has been used, to improve the generalization
of the model. In addition, an early stopping function was integrated,
which calculates the error on a separate validation set to avoid the
overfitting of the model.

Fig. 2: Improvement of the training process

Fig. 3: Resulting depth maps from the GAN baseline
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Depth map enhancement with multiple estimations
The limitation of the receptive field of the baseline network has
been overcome through multiple estimations, which offer a good
structure consistency through the low-resolution estimation and
richness of details through the high-resolution estimation. With the
help of an additional merging network, it was possible to combine
the two estimations exploiting the advantages of both and reaching
an RMSE of 14.66 (5.7% for intensity between 0 and 255) (Fig. 4).

Fig. 4: Double estimation and merging network’s results
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