Ziel des Projektes

Das Ziel des Projektes war es verschiedene Halbleitertypen und Konfigurationen zu testen um die beste Kombinationen zu ermitteln.

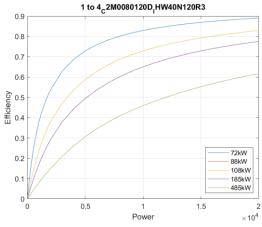
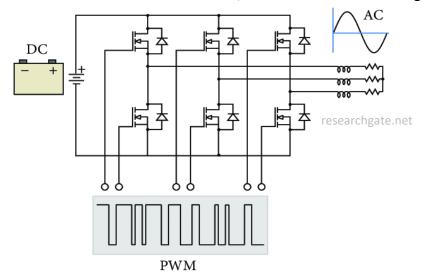



Abb. 3 Effizienz-Leistungskurve einer 1:4 Konfiguration

Was ist ein Inverter

Der Inverter eines Elektrofahrzeugs wandelt den Gleichstrom der Batterie in einen 3-Phasen Wechselstrom um, um die Motoren zu versorgen.

Was ist anders als bisher?

Bisher wurden entweder IGBTs oder MOSFETs zum Schalten der Last verwendet. IGBTs haben höhere Schaltverluste als MOSFETs, haben dafür bei höheren Lasten weniger Leitverluste. IGBTs sind auch generell günstiger. Durch eine Parallelschaltung könnten jedoch die Vorteile beider Halbleitertypen vereint werden.

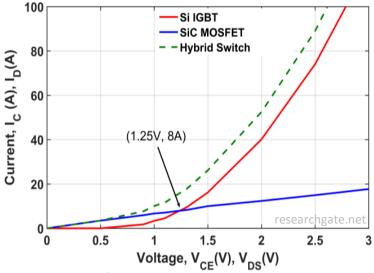


Abb. 4 Spannungsabfall über den Halbleiter pro Ampere

Simulationsparameter

Batteriespannung	400V
Ambienttemperatur	75°C
Thermischer Wiederstand (Kühlkörper-Ambient)	0.03 K/W
Schaltfrequenz	10kHz
Ausgangsfrequenz	50Hz
Ausgangsspannung	240V

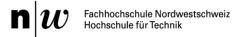
Resultate

Es wurden 4 verschiedene Halbleiterkombinationen und 5 verschiedene Leistungsklassen getestet. Die nachfolgende Tabelle stellt die besten Kombinationen je Leistungsklasse dar. Der Preis der Halbleiter ist ebenfalls in die Bewertung eingeflossen.

Leistungs- klasse	Kombination	Ø Eff.	Preis	Preis-Effizienz- Score (Tiefer ist besser)
72kW	1:4 MOSFET:IGBT	98.9%	264	0.47
88kW	1:1 MOSFET:IGBT	99.1%	539	0.74
108kW	1:1 MOSFET:IGBT	99.1%	673	0.95
185kW	1:1 MOSFET:IGBT	99.3%	1381	1.52
485kW	1:1 MOSFET:IGBT	99.6%	3683	2.14

Studiengang / Semester: Systemtechnik FS21

Diplomand: Micha Rüdiger


Auftraggeber: Munaf Rahimo, MTAL GmbH

Experte: Prof. Dr. Renato Minamisawa

Dozentin: Prof. Dr. Silvia Mastellone,

silvia.mastellone@fhnw.ch

www.fhnw.ch/technik

Optimale Auswahl von Halbleitern in E-Fahrzeugen

Einleitung

Jedes Jahr werden mehr Elektrofahrzeuge gebaut und verkauft. Die Energieeffizienz der Fahrzeuge momentan schon sehr gut, kann aber noch verbessert werden. Eine höhere Effizienz bedeutet längere Fahrstrecken ohne lästiges aufladen des Fahrzeugs.

Grundprinzip

Der Antrieb eines klassischen Elektrofahrzeug besteht aus Batterie, Inverter und einem oder mehreren Motoren.



Abb. 1 Vereinfachtes elektrisches Schema eines Elektrofahrzeugs

Δ