
Project Report

Automatic Detection and Analysis of Tumor
Tissue in Prostate Punch Biopsies

Implementation of an Inventory System

to Acquire Digital Image Data

Master of Science in Engineering

P7, Autumn Semester 2014

Dario Vischi

Advisor:
Prof. Dr. Christoph Stamm, FHNW

Customer:
Prof. Dr. Peter Wild, USZ

Dr. Qing Zhong, USZ
Norbert Wey, USZ

Institute: Institute of Mobile and Distributed Systems (IMVS)

I like to thank Prof. Dr. Christoph Stamm, Prof. Dr. Peter Wild, Dr. Qing Zhong and
Mr. Norber Wey who made the project possible and provided valuable advisory support
whenever needed. Also, I like to thank Mr. Roman Bolzern who supported me with new
ideas and concepts in terms of web engineering during many discussions.

Abstract

The prostate cancer is the most commontype of cancer we have in Switzerland. Every
year about 5300 people develop cancer and around 1300 men die from it. The research
for unambiguous indicators for an early detection of the cancer is nowadays an active
field in the area of medication. In this context, the aim of a current project at the uni-
versity hospital of Zurich is the automatic detection of tumor tissues in prostate punch
biopsies. We would like to perform the detection on a cohort from Aarau with samples
from about 9900 men to build up a model to describe the cancer’s progress.

The current documentation at hand describes the first out of three sub-projects for
the automatic detection of the tumor tissues. We start with the acquisition of the im-
age data by scanning prostate punch biopsies from the cohort from Aarau. Therefore
we implement a semi-automatic process using a PHP web front-end to inventorize and
manage the patient’s data available from the given cohort.
The data is currently expected to be in Microsoft Excel’s XLSX format whereas more
formats might be supported in the future.
In a next step we have to manually scan the biopsies which are then automatic registered
to the previously inventorized patient data. Up to now we could scan 261 slides of the
cohort, from which 52 slides are manually annotated with tumor tissues. These annota-
tions will be used later on to evaluate an algorithm for the automatic detection of cancer.

In the next sub-project the current process will be extended with the automatic de-
tection of cell nuclei based on the 261 slides already scanned and further slides to scan.
Next to the image processing part the process should also evaluate the quality of the
algorithm, which is especially important to optimize the tumor detection algorithm from
the third and last sub-project.

Table of Content

Table of Content

Abstract

Abbreviations 1

1 About the Document 2

2 Project Definition 3
2.1 Background . 3
2.2 Identification of requirements . 5

3 Acquisition Process 7
3.1 Storing diagnosis data form research studies 7
3.2 The underlying PHP framework . 11
3.3 Import diagnosis data from research studies 11
3.4 Print bar codes . 12
3.5 Register scanned images to the database 14
3.6 Register image annotations to the database 15
3.7 Export data from the database . 15
3.8 Bring it all together . 15

4 Software Architecture 18
4.1 The “Patho - Study and Research” system 18
4.2 The File Organizer process . 20
4.3 Physical representation . 20
4.4 The 4+1 Architectural View Model . 23

4.4.1 Logical view . 23
4.4.2 Development view . 36
4.4.3 Physical view . 47
4.4.4 Process view . 48
4.4.5 Use case view . 51

5 Software Testing 56
5.1 Function tests . 56
5.2 System test . 56
5.3 Security test . 57

6 Results 58

7 Reflection 62
7.1 General recommendations . 63

8 Bibliography 64

9 Declaration of Originality 65

i

Table of Content

10 Appendix 66
10.1 Software construction tools . 66

10.1.1 PHP UML . 66
10.1.2 PHPDoc . 67

10.2 Selenium test cases . 68
10.3 Attached materials . 72

ii

Table of Content

Abbreviations

API Application Prog. Interface Interface for interacting with a system
C# C Sharp Programming language for the CLI
CLI Common Language Infrastruct. System spec. for platform independency
CSV Comma-Separated Values Data representation and file extension
DAO Data Access Object Abstract interface for db. tables
DB Database Data collection
DBMS Database Management Systems System for managing databases
FHNW Fachhochschule Nordwestschweiz Univ. of Appl. Sc. and Arts NW Switzerland
IDE Integrated Dev. Environment Collection of app. supporting software eng.
IT Information Technology Technologies related to data processing
MSSQL Microsoft SQL SQL for Microsoft’s SQL server
ODBC Open DataBase Connectivity Programming interface for accessing DBMS
ORM Object-Relational Mapping Concept of mapping objects into rel. db.
PHP PHP: Hypertext Preprocessor Server-side scripting language for web dev.
PSR “Pathology-Study & Research” Inventory system for study data
SQL Structured Query Language Query language for databases
TIF Tagged Image File Image format for raster graphics
TMA Tissue Microarray Collection of up to 1000 tissue cores.
UML Unified Modeling Language Modeling language used in software eng.
URL Uniform Resource Locator Reference to a resource
USZ Universitaetsspital Zuerich University hospital of Zurich
XLSX Office Open XML Microsoft Excel’s XML-based file format
XML Extensible Markup Language Data representation of hierarchical data
ZF Zend Framework 2 Enterprise web app. framework for PHP

1

CHAPTER 1. ABOUT THE DOCUMENT

1 About the Document

The documentation at hand describes the inventory process of the cohort from Aarau and
the obtained results. We start with the project definition, its background and the origin
problem to solve in chapter 2. Chapter 3 discusses possible solutions to the presented
problem and describes the acquisition process build up. More technical details about
the software architecture involved into the acquisition process can be found in chapter
4. As before, we present the underlying problems and the chosen solutions by looking at
the architecture from five different aspects. Chapters 5 and 6 complete the acquisition
process by presenting and verifying its results whereas chapter 7 gives a final overall
reflection about the whole project.

2

CHAPTER 2. PROJECT DEFINITION

2 Project Definition

In the first part of the project called “Automatic Detection and Analysis of Tumor Tissue
in Prostate Punch Biopsies” we build up a process to inventorize patient data and there
related punch biopsies from medical studies. In our concrete case we are working with
a cohort from Aarau with samples of about 9900 men where cancer could be detected
by 475 patients [1]. With the PSR system we migrate the anonymized diagnosis data
of the 475 patients from the study and scan all related tumor tissues with the Ventana
iScan HT1. Afterward, the images are examined by Prof. Dr. Peter Wild from the
university hospital of Zurich and Prof. Dr. Grobholz from the canton hospital of Aarau
who annotate the tumor tissues. The image’s metadata and annotations are imported
into the PSR system to get a database containing all relevant information we need for
implementing and testing an algorithm which do the same but automated examination
of tumor tissues.

In the second part of the project we then plan to integrate a second process to ap-
ply and evaluate image processing algorithms on the high-quality image data obtained
so far. Finally, the third part deals with the implementation of a concrete algorithm for
detecting tumor tissues inside the given images and evaluation of the algorithm.

Further details can be found in the attached document “Project definition” which is
also listed in the appendix 10.3.

2.1 Background

The prostate cancer is the most common type of cancer we have in Switzerland. Every
year about 5300 people develop cancer and around 1300 men die from it. A diseased
person can be actively medicated, but only with the risk of complications and adverse
reactions. The medication is not only restrictively recommended because of the possible
risks but also because only 3 out of 40 people die as can be proved by prostate can-
cer. A major problem presents the early detection of the cancer. All known methods
such as the digital rectal examination, the PSA-Test2 or the biopsy of the prostate do
not present unambiguous indicators. It is part of the nowadays ongoing research to
find better indicators, e.g. the European Randomized Study of Screening for Prostate
Cancer (ERSPC) [2, p.17] [3, p.2]. A current study at the university hospital of Zurich
researches a regression analysis of historical data from patients and extracted features

1http://www.ventana.com/product/page?view=iscanht
2Test method for measure the amount of prostate-specific antigen (PSA) inside the blood

3

http://www.ventana.com/product/page?view=iscanht

CHAPTER 2. PROJECT DEFINITION

from DNA, RNA and Protein analyses. One sub-project of this regression analysis deals
with the extraction of features from prostate images which will be combined with the
features from the other areas. For this purpose an inventory system is required firstly
which allows to manage the data of prostate cancer diagnoses. Secondly, in the follow-up
projects we attempt to implement an algorithm for detecting cancer cells on which the
features extraction will be based on. Figure 2.1 shows an overview of the whole project
stack.

GregressionGanalysisGofGDNA,GRNA,GandGproteinGmeasurementGdata
(domain:Gbiology)

automaticGclassificationGofGtumourGtissuesGin
prostateGpunchGbiopsiesGinGtheGareaGofGtheGproteinGanalysis.

(domain:GcomputerGscience)

informaticsGprojectG9
(calculatingGtheGGleasonGScoreGofGindividualGimageGregions)

informaticsGprojectG7
(mappingGtheGorderGprocessG8GacquisitionGofGimageGdata)

informaticsGprojectG8
(implementationGofGtheGprocessingGpipelineGforGextractingGfeatures)

extractionGof
featuresGfrom

theGDNAGandGRNA
analysis

extractionGofGfeatures
fromGtheGproteinGanalysis

Figure 2.1: Overview of the project stack

The main objectives of the roadmap concerning the informatics project (IP) 7 to 9,
which are part of the Master education, can be summarized as follows:

Project Short description
IP7 Acquisition of digital image data with the Ventana iScan HT and semi-

automation of the inventory process. Additionally, annotation of the image
data with areas of normal and cancerous tissue.

IP8 Segmentation of the cell cores inside the acquired image data and calculation
of the density distribution of cores within normal and cancerous tissues.
Furthermore, implementation of a process to gain a precision & recall graph
of an algorithm, e.g. for core segmentation, to measure its performance.

IP9 Image analysis of the acquired image data for areas with normal and can-
cerous tissue. The used algorithms will be validated with the annotations
from IP7 as a test set and the process from IP8 to measure its performance.

Table 2.1: Overview of the informatics projects

4

CHAPTER 2. PROJECT DEFINITION

2.2 Identification of requirements

The university hospital of Zurich has a developed IT infrastructure where we would like
to implement the inventory system. The infrastructure already holds several provisions
we need to consider. Firstly, the photographic laboratory where we scan the tissues
later on already implemented several applications written in PHP, C# and C++ using
a Microsoft SQL database as persistency layer. Based on this knowledge and the good
experience from earlier projects using those technologies the inventory system should
also be built up with PHP and C# as far as possible and using the Microsoft SQL
database as its data source. Furthermore, the interface to interact with the database
has to be ODBC. Secondly, we decided to use the new Ventana iScan HT from Roche,
the self-proclaimed most powerful scanner in anatomic pathology3, to scan the tissues
and store them as image data. With the implementation of the Ventana scanner into the
acquisition process it is possible to test its performance and its field of applications for
the future simultaneously. The philosophy of the already implemented processes at the
photographic laboratory is to use small reusable software tools which can be combined
together in various ways. This approach makes it easier to change individual parts of a
process in the future or to search for bugs by analyzing each tool separately instead of
one huge application.
Based on these provisions the main task is to build up an acquisition process to scan the
physical tissues (prepared on so called “glass slides”). A previous meeting was held to
gather and specify the requirements from all stakeholders which should be met by the
process later on. The requirements are listed as follows:

� Creating and setting up a database and its schema for persistently storing diagnosis
data form research studies.

� Evaluating a PHP framework the inventory system will be based on and which
provides the following features:

1. Multilingualism

2. Extensibility

3. Database accessibility

4. Performance oriented

5. Security

� Import function to read diagnosis data from studies into the database. The data
is given as XLSX-Excel files.

� Function to print bar codes for identifying tissue slides based on its study data.

� Background process for handling scanned images and registering them to the
database.

3Product website: http://www.ventana.com/product/page?view=iscanht

5

CHAPTER 2. PROJECT DEFINITION

� Background process for handling image annotations and registering them to the
database.

� Export function to write data from the database to an XML file.

These requirements slightly differ in some points from the original project definition
document as listed in the appendix 10.3. Firstly, we chose not to implement a data
entry routine where external users could ask for scanning orders. During the project a
concrete use case was not given and we decided not to produce functions for an uncertain
future. However, instead of the order form we implemented a background process which
can automatically recognize newly scanned slide images and annotations and register
them to the inventory database. As shown during the scan process this feature is not
only practical but also reduces the overall effort significantly. The second unimplemented
requirement is the Kaplan-Meier curve of a study. During the project it appeared that
the curve could not be calculated without the feature data from the image analysis,
which is part of the follow up project.
Because of this reason we put back the requirement but implemented a simple correlation
of patient data as a proof of concept for chart visualizations.

6

CHAPTER 3. ACQUISITION PROCESS

3 Acquisition Process

In the second chapter we talked about why we need an acquisition process and which re-
quirements we need to met. The current chapter discusses about how these requirements
could be implemented and how they could be combined together to a concrete process.
Chapter 4 later on goes into details about the individual implementations discussed in
this chapter whereas chapter 6 presents the results obtained. Finally, the reflection of
the process and the modeling aspects can be found in chapter 7.

3.1 Storing diagnosis data form research studies

The database management system is already set by provision to be the Microsoft SQL
Server 2012 whereas the schema to design has no restrictions. We firstly have a look at
the patient data from the given Excel file to import:

ID 4901
Round 1
DoB 26−Mrz−44
Age at s tudy ent rance 54 .63
Diagdat 15−Jan−99
Quel le KSA
Bx Nr Aarau B99.973−78
cTstage T1c
cNstage Nx
cMstage Mx
Biopsy Gleason1 2
Biopsy Gleason2 2
. . .

Listing 3.1: An example of a data record.
The data representation is transposed for better reading.

Each data record represents an anonymous patient. The ID is externally set and might
be occur several times in our data set - which means it is not unique. Furthermore, it
is possible as several records are connected to the same patient. However, this relation
can not be derived as we can not clearly identify the records. Based on this knowledge
we have to treat each record itself and import it as a new patient.

7

CHAPTER 3. ACQUISITION PROCESS

A simple database schema may put all data into a single table which attributes hold
the record titles given in listing 3.1. However, this solution is not extensible and only
supports Excel files with the exact formation as given above. If we would like to be
more generally we can store the record titles and values in separate tables. With this
approach we can handle all Excel files which holds titles in a first row and its values in
the following rows. Our second version contains three tables for the patient’s attributes,
its values and a table relating the attributes and its values.
But is this already enough concerning the entities of the real world? In figure 3.1 we
can see the physical representation of a tissue slice and its origin.

Figure 3.1: Origin of a tissue slice

In the real world we can find glass slides containing either single tissue slices, as given
in our study from Aarau, or an array of tissues, a so called TMA. The tissue originally
results from a specimen extracted on a specific diagnosis date. During the specimen we
may have obtained several blocks of the tissue which later on are cut in small slices and
prepared on glass slides. This slides finally can be scanned by a slide scanner. Again, a
slide may contains several tissues with different areas of interest.

With the knowledge given we can take the next step and analyze the attribute “Bx Nr Aarau”
from the Excel sheet given in listing 3.1. It contains a so called b-number which rep-
resents the year of a diagnosis and a range of IDs which identify the related specimens
itself. Now we may ask what happens with our slide image we would like to map to
its patient? As we can see a data record may contains more than one specimen and
so may be related to more than on slide image. We have to find a third version of
our data schema which also holds a table for the specimen, its blocks, its slices and its
areas. Additionally, the slices have to be related with an image table which again is
related to tumor annotations we would like to draw inside the images later on. The
relation between the tables could be implemented in several ways. One way would be

8

CHAPTER 3. ACQUISITION PROCESS

to give each block an unique identifier and save its relations to the next upper entity,
here the specimen, which again is related to the patient’s diagnosis. We decided to use
all this information directly as part of the unique identifier. So the patient’s diagnosis,
the specimen ID and the block ID are necessarily to identify a single block record. For
this approach we need more attributes and the unique identifier e.g. for an area is much
larger. However, it makes search operations e.g. for slices of a specific specimen much
easier. Additionally, we have the possibility to set constants on the identifier so e.g.
only slices with an already existing specimen could be stored to the database which
guaranties consistent data. One last thing to mention: The attributes of the Excel’s
data records could be separated into two entities. On one hand we have the patient’s
attributes, e.g. the date of birth and sex. On the other hand we have the attributes
of a diagnosis: e.g. the round, the diagnosis date or the Gleason score of the biopsy.
The diagnosis date in our case is the date of the prostate biopsy. During a diagnosis we
theoretically could extract more than one specimen from the patient which makes the
diagnosis a superior entity. The final database schema can be found in figure 3.2 which
also includes a table for bar code printers which we will discuss in chapter 3.4.

9

CHAPTER 3. ACQUISITION PROCESS

Figure 3.2: The database schema

10

CHAPTER 3. ACQUISITION PROCESS

3.2 The underlying PHP framework

To implement a web application we basically have two possibility. Either we implement
all and everything by ourselves or we use an already existing framework which supports
us with basic functions. As the implementation of a web application from the scratch
needs a lot of time we decided to use a framework. We started with a very simple exam-
ple1 implemented by hand to get in touch with the basic structure of a PHP application
which is described more in details in chapter 4.3. In a next step the right framework for
the given problem has to be found. Roman Bolzern, which works in the field of web engi-
neering since many years, recommended the Zend framework 2 which is already used by
many famous web applications2. For a better overview we compared more frameworks
such as Symfony2 (http://symfony.com/) and Laravel (http://laravel.com/). In the
internet hundreds of articles can be found, each preferring another framework for good
reasons. At the end we followed a statement from stackoverflow: “The answer as how
to decide which is best is subjective. Pick the framework you best feel will meet your
project needs.”3. As all three frameworks from above holds the requirements described
in chapter 2.2 we decided to use Zend which was most familiar. Another important
point was the efforts needed to make small modifications in the future. Here we see
an advantage in Zend as we set all major settings in separate configuration files which
can also be modified without the understanding of the whole source code behind. Some
reviews call the Zend framework difficult to configure the experience however shows as it
is relatively easy with an example given. Moreover, Zend offers a huge range of settings
to choose which makes most wanted configurations possible.

A more detailed description about the use of the framework could be found in chap-
ter 4.3.

3.3 Import diagnosis data from research studies

From the previous sections we know how our data to import looks like (see listing 3.1)
and how the database schema looks like we would like to store our data in (see figure
3.2). A simple approach to import this data would be to step over each data record
inside the Excel file and store it separately inside the database. As there is no standard
for saving patient data in the field of pathology it is most probably as future data to
import are not given as Excel files. In this situation we need to write a new importer
for each new file format. But what happens if anything changes inside the import logic?
In this case we have to modify each and all importer by hand. Furthermore, the code
containing the commands to store the values extracted from the file to import is also
redundant in each importer which is also not desired in software engineering. Therefore,

1http://anantgarg.com/2009/03/13/write-your-own-php-mvc-framework-part-1/
2E.g. Cisco’s WebEx or Centroy’s online collaboration tools
3http://stackoverflow.com/questions/22675277/

how-to-best-select-a-php-framework-laravel-symfony-zend-etc

11

http://symfony.com/
http://laravel.com/
http://anantgarg.com/2009/03/13/write-your-own-php-mvc-framework-part-1/
http://stackoverflow.com/questions/22675277/how-to-best-select-a-php-framework-laravel-symfony-zend-etc
http://stackoverflow.com/questions/22675277/
http://stackoverflow.com/questions/22675277/how-to-best-select-a-php-framework-laravel-symfony-zend-etc
how-to-best-select-a-php-framework-laravel-symfony-zend-etc

CHAPTER 3. ACQUISITION PROCESS

we firstly decided to write a parser which translates a data record from a specific file to
import into an intermediate XML structure. In a second step we have a single importer
for this XML structure. This approach also contains two more advantages. Firstly, to
have both routines split up we can debug each routine individually and check its result
for bugs which makes the error handling easier. Secondly, in chapter 2.2 we mentioned
as small combinable software tools are preferred.

Another approach would be to use manual pre-processing. In this case we could only
provide a single importer and only expect an Excel file to import. This might be easier
for the software implementation but not practical in the future if we have a lot of studies
to parse. Moreover, in chapter 2.2 we discussed about as we would like to automate each
step of the overall process whenever possible which is not given here.

3.4 Print bar codes

The task of a slide scanner is to scan glass slides and save these images on the file sys-
tem. This is also the only talk it does. We can not do any other automation here. If
we use the standard settings e.g. of the Ventana iSacn HT it will save each image file
with an incremental identifier starting from “1”. As we do not have any information
about the scanned image we have to open each file individually read its label information
and assign it manually to a record inside the database. Obviously, this process is not
acceptable if we have more than a dozen slides. We could automate this process by
writing an image processing routine to analyze the slide label of the image and extract
its written text. However, it will takes a lot of time to implement this routine whereas
the Ventana iScan HT already hold such a build-in routing for bar codes.

To identify a scanned image we need not only an identifier which is set during the
scan process but an own unique identifier which makes it possible to assign the image
automatically to the database. In case of the Ventana iScan HT we have (only) one
solution. We can use the bar code of each glass slide as a later file name which then can
be proceeded by a background process which reads the file name and register it to the
database. In this case we only need to write an additional routine which prints a bar
code clearly assignable to a database record.

In this case a next point to discuss is the representation of the bar code. As discussed
with Norbert Wey we have several constraints to meet:

� The bar code should be as short as possible to reduce errors while reading its code.
The code should contains a maximum of nine characters.

� The bar code has to contains human readable information rather than only an
unique identifier. This allows the easy identification of slides during daily business.

� By technical restrictions we can only print 1-D bar codes for now.

12

CHAPTER 3. ACQUISITION PROCESS

To identify a slide we need the following information: The b-number, the specimen ID
and the numbers of the slices available on the slide. Unfortunately, if we put all those
information together as a bar code it exceeds our limit of nine characters. So we de-
cided to print this information as an additional label next to the bar code so the slide
still could be identified. The bar code itself could now contains any unique identifier
which could be related to a slice inside the database. We finally decided to weight the
human readable information a little more high and define the bar code as following:
<patient id>S< image id>. Now we can also read the patient’s identifier out of the
bar code. Only the image identifier is a number generated by the system which is only
needed for the relation between the image and its entry in the database. To keep the
image identifier as short as possible each study contains its own image identifiers starting
with the number “1”.

Finally, we need to discuss if such a bar code is clearly identifiable. Given, we have
a patient ID which can be biunique related to a study we can unambiguously identify
the image ID which again has to be unique for the related study. In this context each
study can hold its own image IDs starting with the number “1”. One problem occurs
as shown in figure 3.2 where a patient theoretically could be participate to several stud-
ies. However, as we currently only have anonymous patient data it is not possible to
have two studies with the same patient - otherwise the patient will not be anonymous
anymore but identifiable. So to say, currently each imported patient gets a new unique
identifier which makes the bar code clearly identifiable. This circumstance may have to
be changed if we find patients participating more than one study in the future. However,
we may also use scanners such as the Ventana iScan HT which can read 2-D bar codes
then so restrictions such as the code length could be omitted. The final result of a bar
code may looks like shown in figure 3.3.

Figure 3.3: A bar code printed from the PSR system

13

CHAPTER 3. ACQUISITION PROCESS

3.5 Register scanned images to the database

After scanning the images we have to register them to the database. The most trivial
approach is to do so by hand which again violates our idea of making the process as
much automated as possible. Another approach is to write a program/script which runs
as soon as we would like to register new images to the database. Again, this needs a
manual intervention by starting and stopping the application. Therefore, we decided to
use a Windows service, a program that operates in the background like a Unix cron job,
which scans for new images to register. But what are we doing if we find a new image to
register? We could directly access the database and insert a new data record. However,
with this solution we face two problems: Firstly, we need to have access to the database.
Secondly, we need to handle the data access and possible errors inside the background
process. If we use the already existing routine for importing the Excel data we would
solve both problems at once as we could reuse the database connection as well as the
data access routine.

The presented solution already fits our problem. However, we decided to separate the
registration routine and the data access routine from the image file handling. Means,
we implement a background program which is searching for new images scanned and
transfer this information in an XML structure to another routine which finally register
the data to the database. This approach again supports the idea of small software tools
which are easy to debug, to test and to combine with each other.

When we scan image files we will face a folder full of images named by there bar code
identification. If we have more than a few hundred files we need a structure to retain
the clarity of our files. We decided to keep a folder for each patient named by its iden-
tification which contains all related image files. This approach also have another big
advantage. The machine scanning the slides or even the user doing so may only have
access to restricted or public network paths. However, maybe the organized files would
like to be stored onto a more private file server which is not directly accessible. There-
fore, the File Organizer could be installed on a machine with enough rights to access
both paths, the one containing the new scanned image files and the path to organize the
files in.

A last question might be why we do not save the image files directly inside the database
but register them instead? On one hand, each file may fill more than 1 Gigabyte on
the hard disk. Such images are not intended to be saved in relational databases. On
the other hand, we would like to exam and annotate the images in the future which is
easiest if we have them directly accessible.

14

CHAPTER 3. ACQUISITION PROCESS

3.6 Register image annotations to the database

The routine is quite similar to the one described in the last section. We also could present
the same approaches and solutions. Our implementation is also straight forward. We
again use the background process extended for searching not only new scanned images
but also new annotations. In the same way we send the annotations in an XML structure
to a separate routine which has access to the database and register them.

3.7 Export data from the database

The data export is the last routine to discuss about. Is should be possible to export data
from the database so we can analyze them later on in an external tool. This routine is
especially interesting after adding additionally information from the image analysis to
the scanned images and export them again. We could analyze this information later on
in an easy way by using corresponding tools such as Matlab or Excel. A first question to
answer is the format we would like to export the data into. Most common formats are
e.g. CSV or XML. As the data stored inside the database represents a connected and
cycle-free graph we would have many redundancy saving the data into a 2 dimensional
format. We take the specimens of a study as example. The first two attributes of a
data record would be the study ID and the patient ID which are connected to a specific
specimen. Obviously all data records will have the same study ID and many records will
have the same patient ID as one patient is most probably connected to several specimen
IDs. For this reason we decided to use an XML structure which can easily map such
data structures. Moreover, the XML file is easy to read from most common software.
Microsoft’s Excel for example has a build-in assistant which allows to import and anal-
ysis the XML structure using only a few actions.

A more detailed description about the export routine could be found in chapter 4.4.1.

3.8 Bring it all together

We already discussed the different routines of the overall process but not yet the connec-
tions in-between. We could write each routine as a separate and standalone application.
The disadvantage on this approach is e.g. as we need to write the database connection
and the data access logic for each routine which means a lot of redundant code. Fur-
thermore, each time we start the whole process we need to verify as each routine can
communicate with its related routines. Another decision to make is the programming
language to use as all routines mentioned could be implemented in both PHP as well
as C#. We decided to implement only the background process for finding new scanned
images and there annotations in C# as the .NET environment perfectly fits for the re-
quested tasks. In C# it is very easy to get access to data and read its values such as the
modification date etc. or to create an XML structure. Furthermore, the IT infrastruc-

15

CHAPTER 3. ACQUISITION PROCESS

ture already holds a tool to manage C# background processes where we could register
our new background process to. Later on we will call this tool the “File Organizer”. All
other routines will be implemented in PHP and combined to the web-application called
“Patho - Study and Research”. This solution allows us to implement the database con-
nection and the data access logic as a single module which could be reused later on by
all others. Additionally, an end-user would like to interact or at least get informed about
the process’s progress which means we need a user-interface. Here we finally can bring
in our first discussion where we decided to use the Zend framework as the basic for our
web application. Zend is strongly known for such tasks and brings already a huge set of
functions for creating user-interfaces, events, etc. However, the represented arguments
could still be covered by C#. The last and most important reason for our decision, using
PHP, is the aspect of accessibility. Inside the university hospital of Zurich we can find
Windows, Mac as well as Unix systems. If we would like to implement these routines in
C# we have to take care as we can install the applications on all systems. Furthermore,
the installation of the routines are mandatory to run the process. However, if we offer
our routines as a web-service everybody in the hospital could get access to it independent
from its operating system and without worrying about permission restrictions. Figure 3.4
shows the elaborated overall process and its connections between the individual routines.

We start with the export of the anonymous study data from an external data source.
After translating the exported data into a for our system readable format we can import
the data into our own database. Those data may also define the slides related to the
study and there specific patients. Based on that information we can print bar codes re-
lated to physical slides and sticking them on. Afterward, the Ventana iScan HT can read
the bar codes and saves the data with an unique identifier each related with a database
entry. As soon as the scanned image is available a background process copy the file into
a structured file directory and register the new file to the database. If later on, a person
annotates a scanned image the background process also hand in the annotation data to
the database.

The current process only implements the Ventana iScan HT for acquiring image data.
As shown in figure 3.4 the process can easily be extended so image data from other slide
scanners, e.g. Hamamatsu NanoZoomer or Zeiss Axio Scan Z1, can be involved. We
only need the information, whenever a new image is scanned. This information may be
available as a text file and so, just needs a translation into an XML representation we
can send to the web-application. Still, the remaining process do not change.

16

CHAPTER 3. ACQUISITION PROCESS

[save image files
to network drive]

.xlsx.xlsx

[DB export]

.xml.xml

[parser] [import data]

.xml.xml

[update DB with information about
new scanned images]

C#

.txt.txt

Hamamatsu
NanoZoomer

Zeiss Axio
Scan Z1

[order
management

system]

[python script]

PHP webserver

[send bar code
data via IP]

Ventana
iScan HT

[stick bar code on slides]

C#

.tif.tif[put images into
file structure]

[update DB with
annotations of

scanned images]

[prepare file
information about

new scanned images]

[Parser]

not part of
the

implemen-
ted process

file server

[scan slides]

patient data
from Aarau

patient data from Aarau

Figure 3.4: Process overview

17

CHAPTER 4. SOFTWARE ARCHITECTURE

4 Software Architecture

Chapter 3 described the overall process which is now presented more in detail in the
following chapter. The focus for this chapter lays on the software engineering of the
routines described earlier on. We first give slight introduction on the applications par-
ticipating the process and later on describe its architecture. The source code itself is
listed in the appendix 10.3 and available as attached material, documented by appro-
priate comments.

4.1 The “Patho - Study and Research” system

We start with the PSR system which represents a web application running on an Apache
HTTP server and the Zend framework 2 (ZF2). Its setup can be summarized as follows:

Apache HTTP server Version 2.2.25
Activated modules:
- php5 module
- rewrite module
Mapping configuration for mime module:
- AddType application/x-compress .Z
- AddType application/x-gzip .gz .tgz
- AddType application/x-httpd-php .php
PHP configuration:
- PHPIniDir “<PHP path>”
http://httpd.apache.org/

PHP Version: 5.4.29
Activated extensions:
- php sockets.dll [Socket extension, needed by ZF2]
- php pdo sqlsrv 54 ts.dll [MS SQL driver]
- php sqlsrv 54 ts.dll [MS SQL driver]
- php gd2.dll [Image extension, needed by PHPlot]
http://php.net/

Zend framework 2 Version 2.3.0
http://framework.zend.com/

PHPExcel Version 1.8.0
https://phpexcel.codeplex.com/

PHPlot Version 6.1.0
http://www.phplot.com/

18

http://httpd.apache.org/
http://php.net/
http://framework.zend.com/
https://phpexcel.codeplex.com/
http://www.phplot.com/

CHAPTER 4. SOFTWARE ARCHITECTURE

Not to blow up the documentation we will not going into details about how to setup
an Apache HTTP server with PHP nor how to configure it. This subject is very well
known and described by many brilliant documentations. The official ones can be found
as following:
http://httpd.apache.org/docs/

http://php.net/manual/en/

We already discussed why we choose PHP and why we choose the Zend framework in
chapter 3. As a short secularization we would like to list the advantages using those
technologies a little more in detail:

� Easy access to the application from everywhere inside the hospital without instal-
lation troubles

� Platform independent access

� Well-established technology, widely used in enterprises

� Easy and adaptable access to databases

� The Zend framework supports multiligualism

� The Zend framework is build up and supports a module oriented approach

� The Zend framework supports secure web application1 as well as performance
optimization

� The Zend framework supports innately the MVC pattern

� The Zend framework supports hierarchical organized configurations and routings

� The Zend framework integrates Bootstrap2 which provides a consistent look and
behavior for latest desktop browsers

� Last but not least, the Zend framework is ideally integrated in the Eclipse PHP
Development Tools (PDT) which contains the most commonly used integrated
development environment (IDE)

1For further details please visit https://www.owasp.org
Zend was also mentioned in https://www.owasp.org/index.php/PHP_Security_Cheat_Sheet

2For more details please visit http://getbootstrap.com/

19

http://httpd.apache.org/docs/
http://php.net/manual/en/
https://www.owasp.org
https://www.owasp.org/index.php/PHP_Security_Cheat_Sheet
http://getbootstrap.com/

CHAPTER 4. SOFTWARE ARCHITECTURE

4.2 The File Organizer process

The second part of our overall system was implemented using C# for a background
process, under Microsoft Windows also known as Windows service3. For the implemen-
tation we use Microsoft’s Visual Studio 2012 with the .NET framework 4.5.

The discussion why we choose C# could be found in chapter 3.8.

4.3 Physical representation

The file structure of a general Zend application Before we go into any implemen-
tation details we will have a brief look about the file structure of the PSR and File
Organizer. First, let us have a look about the structure of a general Zend web applica-
tion. This also underlays several basic concepts we will use later on. As the framework
does not expect a strict structure we could organize the application at free will. How-
ever, Zend offers already a so called skeleton application4 which includes a modular
MVC structure and many pre-configurations out of the box. The skeleton application is
meant to be used as a basic template we can build our application with. We decided to
structure our PSR system using the skeleton application as it saves a lot of time, it is
easy to use and already combines many best practices. Additionally, many articles from
the Zend documentation are based on the skeleton application.

The recommended project structure using the Zend framework is described and well-
founded in the Zend documentation at http://framework.zend.com/manual/2.0/en/
ref/project.structure.html. We slightly adapt this structure to fit our requirements
as shown below:

3http://msdn.microsoft.com/en-us/library/d56de412(v=vs.110).aspx
4https://github.com/zendframework/ZendSkeletonApplication

20

http://framework.zend.com/manual/2.0/en/ref/project.structure.html
http://framework.zend.com/manual/2.0/en/ref/project.structure.html
http://msdn.microsoft.com/en-us/library/d56de412(v=vs.110).aspx
https://github.com/zendframework/ZendSkeletonApplication

CHAPTER 4. SOFTWARE ARCHITECTURE

/

application

config

controllers

language

models

modules

analysis

...

barcode

...

db import

...

db management

...

db export

...

views

Module.php

config

data

docs

library

PHPExcel

PHPlot

Zend

public

css

fonts

img

js

.htaccess

index.php

.htaccess

Root directory of the PSR

The web application as module

Configurations of the main app.

Controllers of the main app.

Language packages of the main app.

Models of the main app.

Modules used by the main app.

The analysis module

...

The bar code module

...

The database import module

...

The database mngt. module

...

The database export module

...

Views and layouts of the main app.

Entry point for the module manager to load the main app.

Global conf. such as database access, module directories, ...

Global data such as PDF files, ...

Documentation of the web application

Libraries used by the application

The PHPExcel library

The PHPlot library

The Zend library

Single directory which is directly accessible by URL (For secu-

rity reasons no other folder should be directly accessible)

CSS files of the application

Fonts of the application

Images of the application

Java script files of the application

Permission file for the web server

(Gives only access to the index.php file)

The start page of the application

Permission file for the web server

(Gives only access to the public folder)

We see as the main application itself represents a module which again contains sub-
modules, described later on. A valid Zend module only needs a “Module” class stored
inside the “Module.php” file (see /application/Module.php from the above file struc-
ture). When the new module is loaded into the framework of Zend several actions take

21

CHAPTER 4. SOFTWARE ARCHITECTURE

place, depending on the module’s setup5. It may automatically loads the corresponding
classes with Zend’s autoloader or defines URL routings and translations. Another note
to remark, the only file directly accessible is the /public/index.php file, defined by the
.htaccess configuration. The index.php also loads the ZF which again loads all registered
modules and routing definitions. Only by the routing definitions a user is allowed to get
access to other resources which increases the security of the application tremendously.

The ZF itself is very huge and contains many more things to talk about such as the
service manager, the translation suite or the autoloader6. For more information we
refer to the official Zend manual at http://framework.zend.com/manual/2.3/en/

index.html

The file structure of a general windows service Next, we have a look at the general
file structure of a windows service. Again, this also underlays several basic concepts we
will use later on. The structure was taken from the TechPro article “Creating a Simple
Windows Service in C#”7 which is based on the official documentation of Microsoft8.
Because of its simplicity and clear description we did not search for other alternatives but
implemented the solution straight forward. Its project structure, as for most Windows
services, is given below:

/

File Organizer

bin

App.config

AuditFileHandler.cs

File Organizer.csproj

FileRegistrar.cs

LogFileHandler.cs

Program.cs

WindowsServiceInstaller.cs

Informatik Projekte 7.sln

Root directory of the file organizer

The application and its resources

The compiled executable

The configuration of the application

The audit file handler -

This class can read and manage an audit file

The visual studio project file

The file registrar class can access the

PSR system and upload new data

The audit file handler -

This class can read and manage a log file

The main program itself, defined as windows service

The service installer -

To register a service to a windows operating system

a corresponding installer is required

The visual studio solution file

5More information can be found at:
http://framework.zend.com/manual/2.3/en/user-guide/modules.html

6http://framework.zend.com/manual/2.3/en/modules/zend.service-manager.intro.html

http://framework.zend.com/manual/2.0/en/modules/zend.i18n.translating.html

http://framework.zend.com/manual/2.3/en/modules/

zend.loader.standard-autoloader.html
7http://tech.pro/tutorial/895/creating-a-simple-windows-service-in-csharp
8http://msdn.microsoft.com/en-us/library/d56de412(VS.80).aspx

22

http://framework.zend.com/manual/2.3/en/index.html
http://framework.zend.com/manual/2.3/en/index.html
http://framework.zend.com/manual/2.3/en/user-guide/modules.html
http://framework.zend.com/manual/2.3/en/modules/zend.service-manager.intro.html
http://framework.zend.com/manual/2.0/en/modules/zend.i18n.translating.html
http://framework.zend.com/manual/2.3/en/modules/zend.loader.standard-autoloader.html
http://framework.zend.com/manual/2.3/en/modules/
http://framework.zend.com/manual/2.3/en/modules/zend.loader.standard-autoloader.html
zend.loader.standard-autoloader.html
http://tech.pro/tutorial/895/creating-a-simple-windows-service-in-csharp
http://msdn.microsoft.com/en-us/library/d56de412(VS.80).aspx

CHAPTER 4. SOFTWARE ARCHITECTURE

Each windows service consist of two components, the service and the corresponding
installer. To register a service to a windows operation system the installer is needed to
create new registry entries, to define the account under which the service will run and
the display name of the service. The service itself will then be embed in the windows
service environment and can be started by the windows service manager as needed.

A more detailed description about the installation process can be found inside the user
manual of the PSR system. For further technical readings about windows services we
refer to the corresponding literature:
http://msdn.microsoft.com/en-us/library/d56de412(v=vs.110).aspx

http://tech.pro/tutorial/895/creating-a-simple-windows-service-in-csharp

4.4 The 4+1 Architectural View Model

The 4+1 view model was designed by Philippe Kruchten 1995 and describes the software
architecture of a system from different point of views [4]. As his model on one side is
very easy to understand and on the other side provides a clear structure we will adopt
it for the upcoming subsections. The following table gives a short overview of the views
involved.

Logical view Describes the functionality and services for the end-user.
Development view Describes the system’s architectural approach and modules.
Physical view Describes the distributed components and there connection.
Process view Describes the communication between the components.
Use case view Describes scenarios based on the given architecture and its

design. This view is also called the “plus one” view.

We start with the logical view which takes a look into the functional requirements and
there implementation and go on with the development view which gives a complete
overview of the software. This order was chosen as the first part is more close to the
user’s view and gives an easier access to the architecture. Later on, we talk about the
cooperation of the processes and there communication. Finally, we will illustrate some
use cases bringing all previous sections together.

4.4.1 Logical view

A functional introduction to the PSR system After getting an overview of the given
applications we will go on with a top-down approach starting with the available functions
already discussed in chapter 3 - best seen in the menu structure as given in figure 4.1.
The menu structure was designed trying to be user friendly and intuitive. To make the
menu easy understandable the individual steps of the process were visualized with simple
icons which finally holds the concrete functions a user could run. While presenting the

23

http://msdn.microsoft.com/en-us/library/d56de412(v=vs.110).aspx
http://tech.pro/tutorial/895/creating-a-simple-windows-service-in-csharp

CHAPTER 4. SOFTWARE ARCHITECTURE

application the menu seems always easy understandable. However, no usability tests
were made explicitly.

Tools for
importing data

Tools for printing
bar codes

Tools for updating
imported data

Tools for
analysis the

imported data

Settings Help
Tools for

exporting data

Figure 4.1: The menu structure of PSR

All the functions are directly accessible by the corresponding menu entries or related
URLs as shown bellow:

Menu entry URL
(histodb2.usz.ch/patho study research/...)

Import data /dbimport/main
. Parse XLSX to XML file /dbimport/parse/upload
. Import master data /dbimport/import/masterdata
Print bar codes /barcode/main
. Show all bar code printers /barcode/printer
. Create new print job /barcode/job/print
Update database /dbupdate/main
. Update metainfos for scanned images /dbimport/import/scandata
. Update annotations for scanned images /dbimport/import/annotationdata
Export data /dbexport/main
. Export study data /dbexport/xml
Analysis data /analysis/main
. Correlate data from study /analysis/diagram/correlation
Management /application/main
. Settings /application/settings
. Remove study /dbmngt/study/remove
Help /application/help/main
. User Manual /application/help/manual
. About Patho Study Research /application/help/about

We go on with the implementation details of each function starting with the data import
workflow which is visualized in figure 4.5a. As discussed in chapter 3.3 we firstly parse
the Excel file into an XML file which later on is imported to the database. In a first
step the user has to upload its Excel file. In a very simple solution we could process
the file without any user interaction. However, this solution is not flexible and would
only works with the data from Aarau. But, if we present a user interface which settings

24

CHAPTER 4. SOFTWARE ARCHITECTURE

we should offer? In chapter 3.1 we talked about to distinguish between patient data
and diagnosis data which has to be a mandatory setting. We realized as well as the
attribute “Bx Nr Aarau” is not normalized and contains the b-number as well as the
range of specimen IDs in one field. As a solution the user could simply choose a field
which splits the b-number from the specimen ID by a fix defined pattern. However, we
expect to find more denormalized data in future studies. Therefore we choose to offer
a generic way to split a field in a customized way. But how could we cover as many
splitting criteria as possible? We could use the same methods as the Excel assistant
for importing text data whereas a specific character or a specific number of characters
are chosen as splitting criteria. However, this criteria are very limited which brings us
to regular expressions (RegEx) [5, p.15–23]. This method is not as easy to understand
as the one from Excel but much more powerful. For simplicity we add a check button
which visualizes the splitting criteria so its effect could be directly evaluated. A second
setting to choose is the field containing the range of the specimen IDs. This range is
split up and for each ID given we generate an individual specimen. Finally, the external
patient ID emerge to be an important field which should be able to specify as well. This
ID will be handled separately and be saved in an individual field inside the database for
further use. We could think about many more settings such as data records we would
like to skip or additional fields to insert. However, this actions could be done more easily
as a pre-processing step in Excel so we do not cover this settings in the PSR system.
After parsing the Excel file into an XML file an import function could store the data to
the database. For simplicity and debugging reasons we offer the download of the inter-
mediate XML file. This step is not essential but practical as we can verify the parsing
process before we start the import routine. After importing the XML file we visualize a
short summary of processed data and errors or warnings if available. This supports the
user friendly aspects of the application and informs the user what happened during the
import process.

The next workflow covers the bar code printing routine as visualized in figure 4.2d.
The representation of the bar code was already discusses in chapter 3.4. Now we would
like to discuss the implementation aspects of the routine. In the most simple form we
need an IP address of the bar code printer to use and the data to print. As we do not
want to specify the IP address of the printer each time an easy management interface
was implemented. This interface allows the user to add, delete and edit bar code print-
ers. As during the scanning process we only used a single printer this IP adress could
also be hard coded into the source code. However, this solution is hard to understand
if we would like to extend the application later on and is not practical if we once use
others than the currently bar code printer. After choosing the bar code printer we have
to specify the label and bar code to print as discussed in chapter 3.4. Hereby, we need
somehow to define the slices on the slide to scan. To clearly identify a slice we need its
study, its patient, its specimen and its block as shown in figure 3.1. Another solution
would be to use the b-number and the specimen number as this information also clearly
identifies the slide. To print the bar code we have now two possibilities. Either we print
a bar code for all imported specimen numbers or we print the bar code for each given

25

CHAPTER 4. SOFTWARE ARCHITECTURE

slide manually. As we have much more generated specimens than slides we decided not
to print out all bar codes automatically but by hand. Furthermore, we do not know how
many and which slices are available on each slide so we anyway need to add this values
to the database manually.

After printing out the bar codes and scanning the slides the next step would be to
register the new images and its annotations on the PSR system as visualized in figure
4.2b. As discussed in chapter 3.5 the data to register will be send by the File Organizer
which we will look into details later on. Again, we have several options for implementing
the registration service. One solution would be using a REST interface for handling the
uploaded data [6, p.5–6]. The REST technology would fit the requirements. However,
on one hand the implementation would need a lot of effort and on the other hand we
actually do not need a REST interface for any other workflow inside the process. An-
other solution would be to offer a web-form where we could register the new images and
annotations to. With this solution even an end-user could easily register images and
annotations manually to the PSR system. The disadvantage is as the File Organizer has
to open an individual HTTP connection for each image and each annotation to register.
Because of this reason we decided to offer a web-form to upload an XML file containing
all relevant data such as a list of new scanned images. This XML file however does not
necessarily need to exists on the hard disk. The File Organizer for example creates the
XML structure on the fly and directly send it to the web-form never holding the data
persistent.

The final step of the overall process is the export routine as visualized in figure 4.2e. As
discussed in chapter 3.7 we will export the data as an XML file. But which data should
be exported? As we would like to analyze image features in the future those information
would be most important to us. In a first step the user should be able to chose a study
to export and all the wanted attributes from the data originally imported. Afterward he
should choose how many details he would like to see in the export such as the specimen,
the block and the slices an image is based on. For the sake of completeness the user
can even choose to export the registered images with there data. A more simple routine
could export all this data without offering any interface to the user. This solution is
also possible but we have to delete all unwanted attributes in a post-processing step
manually from the XML file later on.

A last workflow to mention is the data analysis. As discussed in chapter 2.2 this work-
flow is implemented as a proof of concept for displaying the Kaplan-Meier curve and
is visualized in figure 4.5b. We currently only support a scatter plot where a study
could be chosen as well as two imported numeric attributes which are correlated later
on. As this is only a proof of concept and not mandatory to the overall process a simple
routine was implemented which could be easily extended. However, for time reason no
alternatives are evaluated here.

26

CHAPTER 4. SOFTWARE ARCHITECTURE

(a) Import data workflow (b) Database
update workflow

(c) Data analysis
workflow

27

CHAPTER 4. SOFTWARE ARCHITECTURE

(d) Bar code printing workflow (e) Export data workflow

Figure 4.2: Activity diagrams of the functional workflows of the PSR

28

CHAPTER 4. SOFTWARE ARCHITECTURE

The activity diagrams are generally easy to understand but may not give all information
needed. Two things we have to discuss here: Firstly, if we parse an XLSX file as seen
in the import data workflow we have to generate a new XML file on the server side.
But this means as the server will store more and more files after a certain amount of
time. To avoid this unwanted effect the PSR system checks each time the user calls
the “/dbimport/parse/complete” view if XML files older than two hours exist and if
so delete them automatically. This behavior also have the advantage as if we would
like to go back in the browser history shortly after parsing an XLSX file we can still
access the XML file during two hours. The same approach was also implemented for
the XML file in the export data workflow. Another point to talk about is the print bar
code workflow. As shown we can define new blocks and slices as needed in a simple way.
But after defining e.g. 6 slices we would like to partitioning the slices in a unrestricted
way, e.g. [(1), (2,3), (4,5,6)]. To meet this requirement we generate a new image entry
related to the chosen slices inside the database each time a bar code is printed. With
this approach a person can enter all available slices into the system without printing
any bar code and define its assignments to the physical slides as needed in the future.
Moreover, if we repartition the slices in the future we could keep the database model
and data as given and directly print a new bar code which only creates a new image
entry related to the already entered slices.

After talking about the functions given by the system we would like to go a little deeper
and present its layer-architecture. At this point, we do not present a whole class diagram
as it will contains to many information and do not support the understanding of the ar-
chitecture. Instead, we will focus on the representative function “Management/Remove
study” and the involved classes as present in the following diagram 4.3.

29

CHAPTER 4. SOFTWARE ARCHITECTURE

Presentation-Layer

Business-Layer

DataAccess-Layer

Database

View

Study

Controller

StudyController

AbstractActionController

Model

Study

Form

StudyForm

DAO

StudyDAO

AbstractDAO

Form

AbstractTableGateway

Database

User
AccessgbygZend'sgroutegmapping

AccessgbygZend'sgservicegmanager

AccessgbygZend'sgdatabasegadapter
andg'sqlsrv'gdriver

remove.phtml

User

MS SQL

Figure 4.3: Representative extract from the class diagram

When an end user calls an URL of the PSR system, directly or by using a link, he will be
redirected to the corresponding controller, e.g. “StudyController”, based on the route
mapping definitions stored inside the Zend framework. In a first instance, the controller
will instantiate a new from, e.g. “StudyForm”, and return the corresponding view, e.g.

30

CHAPTER 4. SOFTWARE ARCHITECTURE

“remove.phtml”, and its bounded form as a response to the end user. Based on the form
the user can specify his demand, e.g. specifying the study to remove. After submitting
the form it will be send again to the origin controller which executes the demand and
inform the user about the result. If the demand affects the database the controller will
instantiate a new business model class containing the data to manipulate and hand it
over to the corresponding data access object (DAO) which will finally forward the com-
mand to the database.

In the diagram shown above there are some points to discuss concerning the layer design
of the architecture before we have a look about more details. Firstly, the model-view-
control pattern seems to be just partly adapted to the architecture. This is not just given
by the Zend framework but also in the logical distribution of a web application. Let us
take Java as an example where user A manipulates data in the business model. By an
observer approach changes could be notified to the controller which finally updates the
Swing interface of a user B which is currently working with the same data. Looking at
a web application we cannot update a view as the view will be send once and forever as
a response to a user and we do not have any handle to the view anymore. However, it
is possible using Javascript to dynamically load or update data in the business model.
In this case we will send an asynchronous Ajax request to the web application which
again will be handled by a controller. So to say, it is not possible to get direct access
from a view to a business model by the logical restriction of the technology. A second
aspect to mention are the data access objects. In the standard approach of Zend they
are part of the model package and so called “Tables” whereas in Java and .NET we talk
about data access objects. As the name “Tables” is confusing and not wildly used we
followed the standard approach of Java and .NET. We can find two implementation of
the DAO where they are separated in an own data layer, e.g. by a dedicated module
or we use data transfer objects which are accessible by all layers inside the architecture.
As a trade off, the data objects in the following are stored inside the model package
which is a logical place as the model classes and DAO classes are strongly connected
to each other. But, we do not separate the data access objects to a separate module
as this will make the whole system more complicated to understand. If the application
grows strongly in the future it might be an idea to encapsulate the data access layer to
a dedicated module.

31

CHAPTER 4. SOFTWARE ARCHITECTURE

A functional introduction to the File Organizer In the same way as for the PSR
system we would like to give a short overview of the available functions from the File
Organizer. This time we do not have any menu structure but only a single service entry
point. The user can define the behavior of the service by parameters listed later on. The
parameters can be set directly as start parameter by the Microsoft management console
and the service snap-in. This way is recommended for debug or test cases.

Parameter name Description
1 Source Path The path to search for new scanned images in.
2 Destination Path The path to copy new scanned images to.
3 File Register URI After copy new scanned images they will be registered

to the PSR system by using the hereby given URI.
4 Annotation Register URI The file organizer not only checks for new images but

also for new or edited image annotations. Those an-
notations will also be registered to the PSR system
by using the hereby given URI.

5 Network User Name If we use UNC paths we may need additional rights
to get file access than the account which currently
executes the service. This can be achieved by
setting a specific user name and password here.
ATTENTION: This parameters are currently in
experimental status and only for test cases. For
security reasons do not store login data in plain text.

6 Network Password

If you do not provide any parameters the service will get access to the windows registry
and read the corresponding values there. The registry path is listed below. Also there
are many ways to pass over the parameters like using a configuration file we adapted
the intended approach from Microsoft using the Window’s registry9. A nice but not
implemented tool would be a graphical interface to edit the parameters from the registry.
Moreover, the tool could also provide additional information such as the log and audit
file discussed later on.

HKEY LOCAL MACHINE\SYSTEM\CurrentContro lSet \ s e r v i c e s \
↪→Patho . Study . Reserach − F i l e Organizer \

Given the above parameters the File Organizer copies new images, expected as TIF
files, to an organized structure inside the destination folder. Hereby, a file’s name has
to hold the following pattern: < patient id >S< image id >, e.g. 1234S56. During
the copy process the File Organizer creates a patient-folder named by its ID inside the
destination folder and copies the image file renamed with only its image ID into it.
Figure 4.4 visualize the copy process.

9http://technet.microsoft.com/en-us/library/cc959506.aspx

32

http://technet.microsoft.com/en-us/library/cc959506.aspx

CHAPTER 4. SOFTWARE ARCHITECTURE

Source
Directory

Destination
Directory

PID

Image
(.tif)

Annotations
(.xml)

...

Figure 4.4: The file structure provided by the File Organizer

Files which do not represent a TIF container or do not follow the above pattern will be
copied into an error folder so they will not be proceeded each time the File Organizer
search for new files. Files copied into the error folder have to be handled manually.

For a better understanding of the File Organizer’s process the visualization of its se-
quence diagram is given in figure 4.4.

33

CHAPTER 4. SOFTWARE ARCHITECTURE

(a) Service initialization and main loop for register new scanned images

34

CHAPTER 4. SOFTWARE ARCHITECTURE

(b) The loop for register new image annotations

Figure 4.4: Sequence diagrams of the file organizer

35

CHAPTER 4. SOFTWARE ARCHITECTURE

4.4.2 Development view

In the previous section we had a detailed look into functions of the PSR system and
the File Organizer which included the collaboration between several subsystems. Now,
we would like to take a step back and have a look about the architecture of the whole
system as such.

The modular architecture of the PSR system The modular structure of the PSR
system is based on the general approach of a Zend application and is also implemented
in the basic skeleton application (see chapter 4.3). However, we do not need to follow
this approach but implement either a structural approach or using only one single mod-
ule containing all available functions. Both approaches are widely used for small and
uncomplex web-applications. However, using modules makes it possible to encapsulate
complex software components in well-arranged units we can combine later on which sup-
ports exactly our approach as discussed in chapter 2.2. Also in the future it is easier
to debug or extend modular applications as we can focus on a single module which is
easier than to deal with the whole application at once10.

As we already know about the overall process and its needed functions we now have
to encapsulate them into modules. We could use a separate module for each function
which seems to be a little odd as the registration routine for new images or the regis-
tration routine for image annotations are very similar to each other which favor to put
them together into one module. We orient ourselves on the requirements from chapter
2.2 which already provides a structure for the functions. Figure 4.5 shows the layer
build-up of the system containing five modules where two modules contains third party
libraries, the PHPExcel as an interface for Excel files and PHPlot as a plotting library
for diagrams. PHPExcel was chosen because of the big amount of resources available on
the web and the features provided which allows easy handling of both XLS and XLSX
files. Alternative libraries seems to be faster but limited in its functions11. Additionally,
we see as there is only one single module which has access to the database. This reduces
repetitive code on one side and improves readability on the other side. Furthermore,
if we would like to adapt the data access layer in the future we only need to modify a
single module.

10https://www.cs.princeton.edu/courses/archive/spring03/cs217/lectures/Modules.pdf
11A short discussion can be found on stackoverflow as follows:
http://stackoverflow.com/questions/3930975/alternative-for-php-excel

36

https://www.cs.princeton.edu/courses/archive/spring03/cs217/lectures/Modules.pdf
http://stackoverflow.com/questions/3930975/alternative-for-php-excel

CHAPTER 4. SOFTWARE ARCHITECTURE

Presentation-Layer

Business-Layer

DataAccess-Layer

Database

Ze
n

d
E

fr
am

ew
o

rk
E2

D
BE

m
an

ag
em

en
t

m
od

ul
e

A
na

ly
si

s
m

od
ul

e

D
BE

ex
po

rt
m

od
ul

e

PHPExcel

Ba
rEc

od
e

m
od

ul
e

PHPlot

D
BE

im
po

rt
m

od
ul

e

Figure 4.5: Layer architecture of the PSR

The modules of a Zend application can be loaded and managed individually by the Zend
framework. First, we would like to give a rough description about the available modules:

Database import Module to import or update data into the DB. This
also includes the parsing of data into an import-friendly
representation. For the PSR system we use XML defi-
nitions to import.

Database export Module to export data from the DB. This also includes
the parsing into an export- friendly representation such
as XML.

Database management Module to get direct access to DB tables by using a DB
driver. This is the only module with a data access layer.

Bar code module Module for maintaining and printing bar codes.
Analysis module Module to calculate statistics based on the data stored

inside the DB. Currently, it is possible to plot the cor-
relation between attribute data.

37

CHAPTER 4. SOFTWARE ARCHITECTURE

To visualize the dependencies between the modules we use the component diagram 4.6.
This also shows how the provided functions from the web interface are mapped to the
modules. The modules itself are more generic than the process chain provided by the
web interface. As an example we have the “DB import module” which do not only
import new data but also update existing data into the database - still, importing data.
This makes the system flexible for further extensions where we have a few basic modules
which we can map to any kind of process visualization by the web interface.

PSR

BarcodezmoduleDBzImportzmodule

DBI managementI module

Analysiszmodule DBzexportzmodule

Loadzorzsavezdataztozdatabase

Database.access

FilezOrganizer

Imp..master.data

Webbrowser

Get.printers Print.job Update.img..data Update.img..annot..dataRemove.studyCorr..study.data

ParsezXLSXzfile

Imp.zmasterzdata

Showzprinters

Printzjob

Updatezimg.zdata

Updatezimg.zannot.zdata

Removezstudy

Exportzstudyzdata

Correl.zstudyzdata

Print.batch.job

Imp..master.data Show.printers Print.job Update.img..data Update.img..annot..data Remove.studyExport.study.dataCorr..study.dataParse.XLSX.file

Database access

Figure 4.6: Component diagram of the PSR modules

The parsing process of the PSR system As discussed in chapter 3.3 our system
do not import a source file containing patient data directly but parse it firstly into a
generic XML structure. Currently we only support Excel’s XLSX file format which has
the advantage as the given data already holds its datatypes comparing to data from a
CSV file. This makes it easy to determine if e.g. a date or a string is given. Following
we give the XML structure which all parsers have to meet. Also, many structures would
be possible we choose one which is self-consistent and adaptable for further patient data.
In the following listing the defined XML standard is given where node’s attributes are
written in brackets.

38

CHAPTER 4. SOFTWARE ARCHITECTURE

study

patient attributes

attribute

[id]

[annotation]

name

type

diagnosis attributes

attribute

[id]

[annotation]

name

type

unknown attributes

attribute

[id]

[annotation]

name

type

patients

patient

[id]

attributes

attribute

[ref]

value

diagnoses

diagnosis

[id]

patient

[ref]

attributes

attribute

[ref]

value

specimens

specimen

[id]

unknowns

unknown

[id]

attributes

attribute

[ref]

value

The new study to import

All attributes of a patient

A specific attribute

ID of the attribute

Annotation of the attribute

Name of the attribute

Type of the attribute

All attributes of a diagnosis

A specific attribute

ID of the attribute

Annotation of the attribute

Name of the attribute

Type of the attribute

All unknown attributes

A specific attribute

ID of the attribute

Annotation of the attribute

Name of the attribute

Type of the attribute

All patient entities

A specific patient

ID of the patient

All attributes of the patient

A specific attribute of the patient

Reference to the attribute

Value of the attribute

All diagnoses entities

A specific diagnosis

ID of the diagnosis

Related patient to the diagnosis

Reference to the related patient

All attributes of the diagnosis

A specific attribute of the diagnosis

Reference to the attribute

Value of the attribute

All specimens of the diagnosis

A specific specimen of the diagnosis

ID of the specimen

All unknown entities

A specific unknown entity

ID of the unknown entity

All attributes of the unknown entry

A specific attribute of the unknown entry

Reference to the attribute

Value of the attribute

39

CHAPTER 4. SOFTWARE ARCHITECTURE

For a better understanding we give an example:

<?xml version=” 1 .0 ”?>
<study>

<p a t i e n t a t t r i b u t e s>
<a t t r i b u t e id=”1” annotat ion=” ex t p id ”>

<id>1</ id>
<name>ID</name>
<type> i n t</ type>

</ a t t r i b u t e>
<a t t r i b u t e id=”5”>

<id>5</ id>
<name>DoB</name>
<type>date</ type>

</ a t t r i b u t e>
</ p a t i e n t a t t r i b u t e s>
<d i a g n o s i s a t t r i b u t e s>

<a t t r i b u t e id=”2”>
<id>2</ id>
<name>Round</name>
<type> i n t</ type>

</ a t t r i b u t e>
<a t t r i b u t e id=”3”>

<id>3</ id>
<name>Methpres</name>
<type>s t r i n g</ type>

</ a t t r i b u t e>
</ d i a g n o s i s a t t r i b u t e s>
<unknown attr ibutes />
<p a t i e n t s>

<pat i en t id=”2”>
<id>2</ id>
<a t t r i b u t e s>

<a t t r i b u t e r e f=”1”>
<value>49936</ value>

</ a t t r i b u t e>
<a t t r i b u t e r e f=”5”>

<value>01−02−1947</ value>
</ a t t r i b u t e>
<a t t r i b u t e r e f=”6”>

<value>55.515400410678</ value>
</ a t t r i b u t e>

</ a t t r i b u t e s>
</ pa t i en t>

</ p a t i e n t s>

40

CHAPTER 4. SOFTWARE ARCHITECTURE

<d iagnose s>
<d i a g n o s i s id=”2”>

<id>2</ id>
<pat i en t r e f=”2”/>
<a t t r i b u t e s>

<a t t r i b u t e r e f=”2”>
<value>3</ value>

</ a t t r i b u t e>
<a t t r i b u t e r e f=”3”>

<value>1</ value>
</ a t t r i b u t e>

</ a t t r i b u t e s>
<specimens>

<specimen id=”17197”/>
<specimen id=”17198”/>

</ specimens>
</ d i a g n o s i s>

</ d iagnose s>
<unknowns/>

</ study>

The given structure is easy to adapt and extensible. Furthermore, the “unknown” nodes
allow us to handle entities not related to a patient nor a diagnosis. After parsing an
Excel file the resulting XML file could be downloaded and the unknown nodes proceed
individually. However, while importing an XML file to the PSR system all unknown
nodes are ignored.

The object-relational mapping of the PSR system To get access to the underlying
database an object-relational mapping (ORM) layer is preferred. This approach makes
it possible to use objects inside the business logic instead of array structures which has
an enormous advantage. Using objects makes the code easier to implement, to structure
and to maintain later on12. The PSR system represents an easy ORM layer which holds
its business classes inside the “model” folder of the “Database Management” module.
Inside the “dao” sub-folder we finally have the data access objects which maps the
database results into business objects. To see the difference of the relational database
schema as given in figure 3.2 and the business classes after the mapping we present the
class diagram of the business classes in figure 4.7.

12More information can be found at:
http://www.oracle.com/technetwork/java/dataaccessobject-138824.html

41

http://www.oracle.com/technetwork/java/dataaccessobject-138824.html

CHAPTER 4. SOFTWARE ARCHITECTURE

Figure 4.7: The class diagram of the business objects

42

CHAPTER 4. SOFTWARE ARCHITECTURE

The data access objects are inspired of modern object databases such as DB4O [7]. To
load or save objects you have to give an example of the instance you are searching for.
Following an example:

$study = new Study () ;
$study−>id = 1 ;

$study = $studyDAO ()−>getStudyByExample ($study) ;

i f ($study != n u l l)
$studyDAO ()−>deleteStudyByExample ($study) ;

Firstly, we create a new instance of a study business class with the ID 1. Afterward,
we are searching for all studies with the ID equal to 1. Note as all fields of the business
class containing there default values will be ignored as filter criteria. In a second step
we delete the study found in the previous step. Again, the default values are ignored
as filter criteria. This is an example for how easy it is to use objects instead of arrays
inside the business layer.

We saw a first search request which gave us a study object with all its attributes, e.g.
its ID and its uuid. However, the related patients are not loaded. To do so you have to
set the deep load flag as following.

$study = new Study () ;
$study−>id = 1 ;

$deepLoad = true ;

$study = $studyDAO ()−>getStudyByExample ($study ,
↪→$deepLoad) ;

foreach ($study−>p a t i e n t s as $pat i en t) {
echo $pat ient−>id ;

}

The above code loads all direct related objects of a study. But, the related objects of a
related object are ignored. The reason is simple as without a limitation the ORM layer
will load all data from the database whenever we search for a single study. Even more
worst, if we have a cycle relation the search request will never ends. This problem is
addressed by nowadays object databases with the so called activation depth [7, p.142-
148; 179-187]. This depth defines how many related objects are loaded from the database
- in our case the depth is equal to 1. This allow us to load exactly those data we are
really interested in. Furthermore, we can keep the code simple and well-understandable.
If you would like to search for objects deeper in the relational chain the code could looks

43

CHAPTER 4. SOFTWARE ARCHITECTURE

similar to the following example:

$study = new Study () ;
$study−>id = 1 ;

$deepLoad = true ;

$study = $studyDAO ()−>getStudyByExample ($study ,
↪→$deepLoad) ;

foreach ($study−>p a t i e n t s as $pat i en t) {
$pat i en t =

↪→$patientDAO ()−>getPatientByExample ($pat ient ,
↪→$deepLoad) ;

foreach ($pat ient−>a t t r i b u t e s as $a t t r i b u t e) {
echo $a t t r ibu t e−>name ;

}
}

In the previous examples we used the ominous object $studyDAO and $patientDAO.
But how are they initialized and how is the database connection established? Let us
start with the class “/application/modules/db management/Module.php”. Here, hav-
ing a look into the method “getServiceConfig()”, we see the initialization of all data
access objects which get the database connection information from the configuration file
“/config/autoload/db.odbc.local.php”.

$dbSett ings = include
↪→ ’ . . / c o n f i g / auto load /db . odbc . l o c a l . php ’ ;

$ t ab l e = new StudyDAO ODBC($dbSett ings) ;
r e turn $ t ab l e ;

Alternatively it is also possible to connect a database by Zend’s database adapter as
following.

$dbAdapter = $sm−>get (’ Zend\Db\Adapter\Adapter ’) ;
$ t ab l e = new StudyDAO($dbAdapter) ;
r e turn $ t ab l e ;

The Zend’s database adapter gets the database configuration previously from the file
“/config/autoload/db.local.php”. Hereby, you have a variety of drivers supported such
as SQLSRV13 which is already set up.

13http://php.net/manual/de/book.sqlsrv.php

44

http://php.net/manual/de/book.sqlsrv.php

CHAPTER 4. SOFTWARE ARCHITECTURE

Inside the corresponding data access class the constructor initialize a new database
connection using the configuration handed over. If we use the database adapter of Zend
we call the constructor of the super class for initialization whereas the ODBC classes
directly open a connection using the standard PHP method “odbc connect”14. All fur-
ther calls are now using the database connection to communicate with the underlaying
database. The solution with the Zend adapter is therefore more flexible as no concrete
SQL syntax is needed whereas ODBC requires the query in a concrete string represen-
tation. However, all the ODBC queries are written in standard SQL-92 which is widely
supported from relational database management systems.

But why do we write a new ORM layer anyway if we could use an already existing
one? There are two reasons for this design decision. Firstly, the PSR system is neither
a system we update every day with transactions nor a system we only use for analysis
purposes. One one hand, we extend our master data with new image and annotation
information which represents a so called on-line transaction process (OLTP) whereas
on the other hand we correlate data which is a so called on-line analytical process
(OLAP). The current ORM frameworks all cover OLTP requirements such as SELECT,
UPDATE, INSERT statements. However, analytical functions are very rarely or not
supported. Secondly, one requirement for the PSR system was to access the database
only using an ODBC interface. While having a look on well known PHP frameworks
pure ODBC is rarely supported. Zend or the maybe best known PHP ORM framework
Doctrine215 as examples only support PHP data objects (PDO)16. With implementing
an own ORM layer it was easy to solve both problems at once.

The architecture of the File Organizer As the File Organizer in the perspective of
the development view is less complex than the PSR system we present the whole class
diagram in figure 4.8. Each Windows service needs a concrete implementation of the
“ServiceBase” class containing the main application and its service installer based on the
class “Installer”. Next to this two mandatory classes we subdivide the main application
into logical entities to structure the code. Therefore we have two classes which are
responsible for accessing and handling the application’s log and audit files as well as one
class to communicate with the PSR system, or any other HTTP service, for register new
image files or annotations. We could think about to break the code into another helper
class containing methods like “GenerateXMLDocument” or “WriteEventLog”. However,
we decided to keep the application as simple as possible to reduce its complexity. In
the future a redesign might be reasonable containing the additional helper class and
bringing the log and audit file handler together by using a common super class. This
super class is especially recommended if further file handlers e.g. for configuration files
in XML representation would be implemented.

14http://php.net/manual/de/function.odbc-connect.php
15http://www.doctrine-project.org/projects/orm.html
16http://php.net/manual/de/book.pdo.php

45

http://php.net/manual/de/function.odbc-connect.php
http://www.doctrine-project.org/projects/orm.html
http://php.net/manual/de/book.pdo.php

CHAPTER 4. SOFTWARE ARCHITECTURE

Figure 4.8: Class diagram of the file organizer

The class diagram is easy to understand and complement the sequence diagrams in
figure 4.4. The “Program” class holds the never ending main loop which checks for
new image data and its annotations. Whenever an event occurs it uses the log and
audit file handler to write its actions. While the log file contains information about
all actions the File Organizer did the audit file contains only the most recent actions
made for a specific image file, e.g. gather information about it. If the File Organizer
unexpectedly terminates it reads the audit file the next time it starts. Each audit entry
will be analyzed for an inconsistent state and if so, tried to be fixed. The approach
was adapted from the database domain where the audit file is also known as transaction
log17.

17http://msdn.microsoft.com/de-ch/library/ms190925.aspx

46

http://msdn.microsoft.com/de-ch/library/ms190925.aspx

CHAPTER 4. SOFTWARE ARCHITECTURE

The error handling of the File Organizer The File Organizer analysis and handles a
file within six steps which are based on the overall process described in chapter 3.8.

1. Find a new scanned image file

2. Gather its information

3. Register file to the PSR system

4. Copy image file from the source folder into its destination folder

5. Find new annotations for an already copied image file

6. Register new or edited annotations to the PSR system

If we analyze the upper actions it appears as there is only one single action which could
cause inconsistency in our sub-process. This is, if we register a new scanned image to
the PSR system (3) but do not copy the image file into its destination folder (4). In all
other cases we may lose the information as a new image file or annotation is available.
However, as soon as we restart the File Organizer we will find the same files and its
information again and process them as expected. To make the system more flexible also
for future changes a whole class was implemented which handles actions made to files.
Each time an action appears the status of a specific file is updated inside the audit file.
Later on, whenever the File Organizer is starting it checks the audit file for the status
of each proceeded file. If we have the situation as an image file is registered to the PSR
system (3) but not yet copied (4) we can react and copy it belated to gain a consistent
status again. This behavior can be extended so other inconsistency can be located and
fixed. Further more, the audit file handler may be used in any other C# application as
desired.

4.4.3 Physical view

We discussed a lot about the PSR system which manages and holds the inventory data.
Next to the PSR system we have two more processes working hand in hand together to
accomplish the overall process: the scanning process which creates new image data and
the File Organizer which moves the new scanned image files into a logical structure and
register them as well as new annotation files to the PSR system. With respect to all
these processes we have an overview of all connected units and there communication.
See also figure 3.4 for the process overview. While the units as such are already covered
previously the communication in-between is now part of the next section.

47

CHAPTER 4. SOFTWARE ARCHITECTURE

4.4.4 Process view

As described we have three sub-processes working hand in hand with each other. Firstly,
the manual process for scanning new image files. This process generates new images on
the network file directory, in our case \\fs-group\ds_00524_daten\PathoStudyResearch\.
The next sub-process, the File Organizer, takes these files and moves them to its destina-
tion network file directory, in our case \\fs-group\ds_00524_daten\PathoStudyResearch\
repository, and organize the files there. If we challenge the current approach we may
think about an external FTP server or even a cloud solution. Both are valid solutions
but are much more complex to implement. Also, we do not have any advantage com-
paring to the first solution in respect to the given requirements.

Next, we would like to discuss about the registration operation of the File Organizer
which sends a defined XML structure to the PSR system, in our case to histodb2.usz.

ch/patho_study_research/dbimport/import/scandata.
Alternatively, the registration can also be performed manually by uploading an XML
file using the web form at the URL given above.
The data represented in the XML file are based on the given requirements and needs
from the overall process as discusses in chapter 2.2. Many other structures are possible
whereas all of them needs to hold the same information. In the following definition each
sub-node is intended to its parent.

data

create

images

image

filename

created

size

scan path

repository path

metadata

patient id

image id

The root node

Creation date of the XML file

Node containing all images to update

A specific image

Name of the image file

Creation date of the image file

Size of the image file

Scan path of the image file

Repository where the image file was moved

Meta data of the image file

Patient ID related with the image file

Image ID related with the image file

For a better understanding we give an example:

<data>
<c reated>2014−10−03 T17:37:22 .9825922+02 :00</ crea ted>
<images>

<image>
<f i l ename>169 S001 . t i f</ f i l ename>
<c reated>2014−10−03 T17:37:07 .5371309+02 :00</ crea ted>
<s i z e>51</ s i z e>
<scan path>C:\tmp\ in \169 S001 . t i f</ scan path>
<r e p o s i t o r y p a t h>C:\tmp\out \169\001. t i f</ r e p o s i t o r y p a t h>

48

\\fs-group\ds_00524_daten\PathoStudyResearch\
\\fs-group\ds_00524_daten\PathoStudyResearch\repository
\\fs-group\ds_00524_daten\PathoStudyResearch\repository
histodb2.usz.ch/patho_study_research/dbimport/import/scandata
histodb2.usz.ch/patho_study_research/dbimport/import/scandata

CHAPTER 4. SOFTWARE ARCHITECTURE

<metadata>
<p a t i e n t i d>169</ p a t i e n t i d>
<image id>001</ image id>

</metadata>
</ image>
<image>
. . .

</ image>
</ images>

</ data>

Equally to the file registration on the PSR system new image annotations are handled.
Therefore, the File Organizer scans the destination directory continuously for new anno-
tations. The annotations have to be made in the Ventana image viewer to be recognized
correctly. This decision is based on the fact as it is the only image viewer currently
available at the university hospital which can read the Ventana image files and make
annotations the same time. The implementation of an own image viewer would need
a lot of effort and therefore is not practicable. Furthermore, the image viewer already
creates a desired XML file for marked annotations. Its structure is given as follows where
sub-nodes are intended and attributes are written in brackets.

Annotations

[file]

SlideAnnotation

[Text]

...

GridMap

...

Annotation

Regions

Region

[Type]

Text

[Value]

Area

[Value]

[Microns]

Vertices

Vertex

[X]

[Y]

...

...

The root node

Name of the annotated image file

Annotation for the whole image

Text annotation for the whole image file

Grid map settings

A specific annotation

Regions of the annotation

A specific region

Type of the region

Text annotation for the region

Text value

Area properties of the region

Area size in pixel

Area size in micrometer

Vertices of the region

A specific vertex

X coordinate of the vertex

Y coordinate of the vertex

49

CHAPTER 4. SOFTWARE ARCHITECTURE

For a better understanding we give another example:

<?xml version=” 1 .0 ”?>
<Annotations f i l e=”C:\tmp\169\001. t i f ”>

<Sl ideAnnotat ion Text=” Test ” Voice=””/>
<GridMap>

. . .
</GridMap>
<Annotation LineColor=”65280”>

<Regions>
<Region Type=” rtRectang l e ” r e g S e l e c t e d=”FALSE”>

<Text Value=” t e s t ”/>
<Voice Path=””/>
<Area Value=”42920”/>
<Area Microns=” 9280.38 ”/>
<V e r t i c e s>

<Vertex X=”15447” Y=”9752”/>
<Vertex X=”15679” Y=”9937”/>

</ V e r t i c e s>
</Region>

</ Regions>
</ Annotation>
. . .

</ Annotations>

To distinguish if an annotation is new or modified we adapt the approach of modern
backup tools. Each file on a modern Windows file system has a field called “attribute”.
Whenever the file is modified this attribute is set to “archive” which is an indicator for
backup softwares to handle the file during the next backup process. We decided to use
the same approach and scan for all annotation files containing the “archive” attribute. If
given, we register the annotation to the PSR system, in our case to histodb2.usz.ch/

patho_study_research/dbimport/import/annotationdata, and remove the attribute
again. As an alternative solution we could use fields others than the “attribute” or save
the registered files and there modification date in an external and maybe hidden file or
database. As the given solution is robust and much more easy to implement we did not
concern the other solutions. However, if once we would face a file system not providing
the “attribute” field we could use one of the alternatives given.

50

histodb2.usz.ch/patho_study_research/dbimport/import/annotationdata
histodb2.usz.ch/patho_study_research/dbimport/import/annotationdata

CHAPTER 4. SOFTWARE ARCHITECTURE

4.4.5 Use case view

The following use cases cover all the functional requirements of the image acquirement
process as described in chapter 2.2. The use cases related to the PSR system are also
implemented as Selenium test cases which are described in chapter 5. This use cases are
later on used in the acceptance test which is also listed in the appendix 10.3.

Use Case [UC001] Import an excel file with study data
Description The user uploads an Excel file to the PSR system, sets the at-

tributes to import, the attribute containing the external PID and
the specimen numbers. Afterward, he starts importing the file.

Precondition - The user already face the start page of the PSR system
- The user has an Excel file containing all study data to import

Postcondition A new study is created inside the database and all data are im-
ported.

Process - Go to: Import/Translate XLSX to XML file
- Choose the Excel file to upload and process
- Split attributes which includes more than one value
- Choose the attribute representing the external patient ID
- Choose the attribute representing the specimen IDs
- Translate the XLSX file into an XML file
- Verify the translation report
- Start importing the translated data
- Verify the import report

Pass - The translated XML file contains all data chosen
- Proceeded attributes, rows and cells are reported
- Empty cells are reported
- All data are imported correctly into the database

Fail - The translated XML file do not contains all data chosen
- Proceeded attributes, rows or cells are not reported correctly
- Empty cells are not reported correctly
- Not all data are imported correctly into the database

51

CHAPTER 4. SOFTWARE ARCHITECTURE

Use Case [UC002] Define a new bar code printer
Description The user define a new bar code printer inside the PSR system.
Precondition - The user already faces the start page of the PSR system
Postcondition A new bar code printer is created inside the database.
Process - Go to: Print/Show bar code printers

- Verify as the new bar code printer is not already present
- Add a new bar code printer
- Specify the type and IP address of the printer
- Save the new printer
- Verify as the new bar code printer is now present

Pass - The bar code printer is stored correctly to the database
Fail - The bar code printer is not stored correctly to the database

Use Case [UC003] Print bar codes for slides to scan
Description The user prints new bar codes for physical slides which he would

like to scan.
Precondition - The user already faces the start page of the PSR system

- Study data are already imported [UC001]
- The bar code printer to use is already defined [UC002]

Postcondition New blocks, slices and images are stored inside the database and
the corresponding bar codes are printed.

Process - Go to: Print/Create new print job
- Choose a bar code printer
- Search for slide values or specify them manually
- Choose a block or create it if not available
- Choose slices or create them if not available
- Print the bar code
- Verify the printed bar code
- Print additionally bar codes if slides are sill available

Pass - The new blocks are stored correctly to the database
- The new slices are stored correctly to the database
- The new images are stored correctly to the database
- The bar codes are printed as expected (see also p. 13)

Fail - The new blocks are stored incorrectly to the database
- The new slices are stored incorrectly to the database
- The new images are stored incorrectly to the database
- The bar codes are not printed as expected

52

CHAPTER 4. SOFTWARE ARCHITECTURE

Use Case [UC004] Scan slides with the Ventana iScan HT
Description The user scans slides prepared with a bar code.
Precondition - The user already prepared the slides with bar codes [UC003]

- The slides are put inside the Ventana iScan HT
- The Ventana iScan HT and the corresponding PC is started

Postcondition Image data of the scanned slides are created and stored by the
Ventan iScan HT.

Process - Start the Ventana iScan HT software
- Select a slide holder containing the slides to scan
- Specify the slides to scan, its destination and quality
- Add the slide holder for scanning thumbnails
- Do the same procedure for all slide holders to scan
- Start scan process for thumbnails
- Select a slide holder containing the slides to scan
- Verify each scanned slide and correct the ROI and focus points
- Add the slide holder for scanning its slides in high quality
- Do the same procedure for all slide holders to scan
- Start scan process
- Verify all stored image data by the Ventana iScan HT

Pass - All images are scanned correctly and without errors
Fail - Not all images are proceeded

- Proceeded images thrown errors

Use Case [UC005] Update new scanned images to the PSR system
Description The file organizer moves new scanned images into a logical file struc-

ture and register them to the PSR system.
Precondition - The user already scanned slides with the Ventana iScan HT

[UC004]
- The file organizer is installed and works correctly

Postcondition The image data are moved in a logical file structure and registered
to the PSR system.

Process - Start the procedure if not done already
Pass - The image files are moved into the correct destination folder

- The file organizer do not thrown any error
- The image data from the database are updated correctly

Fail - An image file is moved into the error folder
- The file organizer stopped unexpectedly with errors
- The image data from the database are not or incorrectly updated

53

CHAPTER 4. SOFTWARE ARCHITECTURE

Use Case [UC006] Update new image annotations to the PSR system
Description The file organizer find new image annotations and register them to

the PSR system.
Precondition - The file organizer is installed and works correctly

- The image data are already moved correctly to its destination
folder and registered to the PSR system [UC005]

Postcondition The image annotations are registered to the PSR system.
Process - Start the procedure if not done already

- Create a new image annotation with Ventana’s Image Viewer
Pass - The image annotations from the database are updated correctly

- The file organizer do not thrown any error
Fail - The image annotations from the database are updated incorrectly

- The file organizer stopped unexpectedly with errors

Use Case [UC007] Analyse imported data of a study
Description The user analysis the imported study data by correlating its at-

tributes.
Precondition - The user already faces the start page of the PSR system

- Study data are already imported [UC001]
Postcondition A correlation diagram between two attributes is drawn.
Process - Go to: Analysis/Correlate data from study

- Choose a study to analyse
- Choose an attribute for the x axis
- Choose an attribute for the y axis
- Correlate data and calculate the corresponding diagram
- Verify the diagram

Pass - The diagram is plotted correctly
Fail - The diagram is plotted incorrectly or not at all

Use Case [UC008] Remove imported study
Description The user realize as the imported study contains incorrect data and

delete the study as well as all corresponding data from the database.
Precondition - The user already faces the start page of the PSR system

- Study data are already imported [UC001]
Postcondition The deleted study and all its related data are removed from the

database.
Process - Go to: Management/Remove study from database

- Choose a study to remove
- Confirm to remove the study
- Verify as the study was removed

Pass - The study and all related data are removed from the database
Fail - The study or any of its related data are not removed correctly

from the database

54

CHAPTER 4. SOFTWARE ARCHITECTURE

Use Case [UC009] Export a study and all its data
Description The user export all data of a specific study for further analysis from

the database.
Precondition - The user already faces the start page of the PSR system

- Study data are already imported [UC001]
Postcondition The study and all its related data are exported into an XML rep-

resentation.
Process - Go to: Export/Export study from database

- Choose a study to export
- Choose attributes to export
- Specify if the export also should contains all related specimens
- Specify if the export also should contains all related blocks
- Specify if the export also should contains all related slices
- Specify if the export also should contains all related images
- Start the export procedure
- Verify the export report and the created XML file

Pass - The exported XML file contains all data chosen
Fail - The exported XML file do not contains all data chosen

55

CHAPTER 5. SOFTWARE TESTING

5 Software Testing

To ensure as the PSR system works correctly the software was tested continuously by
function tests, system tests and security tests. During the function tests the individual
workflows of the PSR system as well as the one of the File Organizer were evaluated
while the system test combines all workflows together. Finally, the security was tested
with the community edition of Netsparker1.

5.1 Function tests

The function tests were made manually. Each new function of the PSR system or the File
Organizer was tested individually to ensure as the standard workflow works correctly and
as expected. This tests did not involve the system as such but only enclosed functions.
We do not provide any results here as the system test covers all function tests.

5.2 System test

The system test is a combination of all function tests which involves the interaction
between the subsystems. The system test for the PSR system is made with the Selenium
IDE and covers the following use cases:

� Import Test

� Print Test

� Update Test

� Analysis Test

� Remove Test

� Export Test

The test descriptions can be found in the appendix 10.2. All tests were successfully
and ensured the correct functionality during the development process while changing
depended resources.

1https://www.netsparker.com/

56

https://www.netsparker.com/

CHAPTER 5. SOFTWARE TESTING

5.3 Security test

With Netsparker the web-application was analyzed for security issues, namely SQL-
Injections and Cross-Site-Scripting. For testing SQL-Injections we added a new printer
of the following type:

DELETE FROM [PathoStudyResearch] . [dbo] . [Att r ibute]

Additionally, we created a new Excel file with the same content and uploaded it to
the PSR system as well as exported the same data again. In all cases we performed
database queries with the sensitive string given above but never deleted any record of
the “Attribute” table due secure string escaping. Another Excel file was uploaded with
a java script command. While previewing the file in the PSR system it appears as the
script was executed - a typical Cross-Site-Script. The application was investigated and
the described page fixed - no other pages with a potential risk were found.

As the PRS system is used internally it is unlikely as any of those attacks happen
in the near future. Anyway, we never know if the application or any part may be used
outside the secure intranet as for example in a demilitarized zone. In this case a secure
and robust software fragment is very valuable to omit future security problems.

57

CHAPTER 6. RESULTS

6 Results

After the implementation of the PSR system and the File Organizer we would like to
summarize and reflect about its most important results.

Expandability A main aspect behind the design of the PSR system was the expand-
ability for further requirements. We tried to meet this aspect as much as possible by
several implementation decisions. With the URL mapping we mostly use parameters
instead of submitting POST requests. For example plotting a correlation diagram from
the study with the ID 1 where the 3rd attribute is used as x-axis and the 15th attribute
as y-axis can be performed calling the following URL:

h i s todb2 . usz . ch/ patho s tudy re s ea r ch / a n a l y s i s /diagram/
↪→p lo t / study=1&xax i s=3&yax i s=15

This approach additionally enables external software, e.g. shell scripts, to interact with
the PSR system. Most responses from the PSR system contain data in the common
“JSON” format which is easy to parse in most environments.
The only exception represents the URL to remove a whole study from the database. In
this case a form request is expected containing the ID of the study.
This does not provide more security but prevent scripts from accidentally removing stud-
ies, e.g. by calling the URL with an incorrect ID.

Another important part, as previously mentioned, is the modular structure of the PSR
system which easily allows us to add new modules and functions by only registering them
in the application’s configuration file. Also the already given modules are programmed
to be reusable. An example is the XML importer or serializer which represents super
classes for importing or exporting data from the database. If we would like to handle
not only XML files but also text files we can simply implement a corresponding importer
and serializer using the corresponding super classes and integrate them into the web-
frontend of PSR.

Another best-practice from the Zend framework is to provide fragments used across
the whole application by the service manager. This approach can be found for the
data access objects which comes along with a meaningfully example. Originally, the
database access was implemented using a PDO ODBC driver1 as the requirement was
to use ODBC. At the end the requirement became more specific and the installation of

1http://php.net/manual/de/ref.pdo-odbc.php

58

http://php.net/manual/de/ref.pdo-odbc.php

CHAPTER 6. RESULTS

a PDO driver was undesired. Without using the service manager it would be necessary
not only to change the data access objects but also each code fragment using such an
object. While using the service manager it was easy to adapt the requirement by only
providing new ODBC data access objects. The other PSR modules wont realize any
change as they only require any kind of data access object with some defined interface
methods. So to say, the PSR system can also easily be adapted if a new DBMS is used.

The approach above even brings us to the next keyword: coupling. By using mod-
ules which interact with each other by calling URLs, instead of sending data such as
HTML forms, we can individually change the process and use given functions by new
modules. This flexibility does not only hold for the PSR system but also for the File
Organizer which is only coupled to the PSR system by URL calls. Therefore, other
scanners than the Ventana iScan HT may be supported in the future.

The XLSX-parsing-process currently only expects a table with titles in its first row
and data in all rows below. With this data we can already fill our database. To improve
the flexibility even more we use regular expressions to split attribute values whenever
needed. This already covers a lot of future possibilities for given data, e.g. splitting a
value after the first occurrence of a big letter. However, we can never cover all possibil-
ities and future pre-processing adaptions that may be needed.
In this case an extension of the current XLSX-parser is required whereas the rest of the
process remains.

Robustness It is always possible that a user sends invalid data to the PSR system. In
all known cases the system reacts and gives a user friendly error message. The system
therefore has four tiers to handle exceptions:

1. Using Javascript on a view to immediately react on wrong input data or to pro-
hibit them. E.g. the bar code print button is only available after all necessary
information are given. Please keep in mind as those checks can easily be avoided
by manipulating the Javascript code and do not provide any security!

2. After data are sent to the PSR system the controller involved can be used to verify
the given information. E.g. the XML file is verified for valid data before being
imported into the database.

3. Instead of validating all forms or data access objects individually we can also use
an input filter which can easily be configured inside the corresponding form or
DAO classes. The validation can also be performed inside the controller class or
any other business class by calling the $form− > isV alid() method. Examples
can be found all over PSR, e.g. while importing data into the database.

4. While interacting with the database the last validation is performed by the con-
strains from the database schema. An exception this late will throw a technical
exception most likely not understandable by an end-user and should always be
avoided.

59

CHAPTER 6. RESULTS

Because the PSR system does not hold hard restrictions but tries to be flexible incorrect
inputs are still possible. Another problem are the redundant checks on the client side
and server side. While Javascript can immediately react on wrong user input it supports
the usability aspect so the users do not need to send a web-form each time before they
get informed about faulty inputs. However, Javascript is easy to omit and therefore
does not provide a secure error handling. This means, we need to check for faulty inputs
again on the server side. It would be nice to bring the error handling together so we
need to implement it only once.

Miscellaneous A nice feature would be to manage the File Organizer and its configu-
ration with a graphical user interface. With the new front-end one could start, stop or
restart the File Organizer, change its configurations defined inside the Windows registry
and visualize its status. The last aspect is rather easy to realize as we only need to
present the log and audit file. Furthermore, the log file handler of the File Organizer
holds the property “LatestLogEntries()” which allows to read the latest 50 log entries
without reading the whole file itself. Because of the advanced time and to ensure a
highest possible quality for the PSR system this feature was not implemented yet.

The scanning process After implementing the previously described process the anonymized
data of the active surveillance cohort from Aarau[1] could be imported without any er-
rors into the PSR system. In a next step we scanned all available slides with a HE stain
and related them to the imported cohort data. The table 6.1 summarize the results.
However, not all slides are available at this moment expecting around 350 more slides
in the future.

As shown in table 6.1 the image acquisition needs a lot of time. Although the scanning
itself could be established during the night handling the preview image, setting up the
focus points and handling errors still has to be made manually. Unfortunately the focus
points automatically set by the Ventana iScan HT are most of the time not suitable. If
we could skip this part we may also skip the preview process which would improve the
process enormous.

One last thing to mention: The Ventan iScan HT has a capacity of 360 slides which
could be scanned over night. Therefore the scanner provides a good performance if we
can use it for batch jobs. However, if we use the scanner during daily business to scan
single slides we have to expect an average working time per slide of about 9 minutes and
50 seconds.

This does not affect the process itself which could also be performed by any other
scanner but may impact the scanning strategy in the future.

60

CHAPTER 6. RESULTS

Slides scanned 261
Incomplete slides1 44

Slides with technical problems2 4
Slides with unrecognized bar codes 4
Time elapsed for scanning slides w/o errors
Scanning previews 178 min. (6.95 %)
Setting focus points 88 min. (3.44 %)
Scanning 1917.03 min. (74.86 %)

Total time elapsed 2183.03 min. (85.25 %)

Time elapsed for re-scanning slides w/ errors
Scanning previews 26 min. (1.02 %)
Setting focus points 18 min. (0.70 %)
Scanning 310.68 min. (12.13 %)
Handling fallen slides 23 min. (0.90 %)
Handling unrecognized bar codes 4 min. (0.16 %)

Total time elapsed 377.68 min. (14.75 %)

Total time of scanning slides (w/ and w/o errors) 2560.72 min. (100.00 %)

∅ time per slide without error handling 8.3641 min.
∅ time per slide including error handling 9.8112 min.

Table 6.1: Results of the scanning process

1Slides which were not accepted by the Ventana iScan HT and needed a re-scan.
2Slides which felt off the robotic arm and needed to be fixed manually.

61

CHAPTER 7. REFLECTION

7 Reflection

After talking about the process implementation in detail we would like to take a step
back and reflect the overall process again. What could we improve the next time? Firstly,
the productive environment and the development environment were not running under
the exact same Apache web server but had one minor version difference. Because the
Apache website did not offer the same version as used in the productive environment
anymore we took the most equal version with the same major release. We did not expect
big troubles in migrating the development environment into the productive environment
which was not the exact case. Especially the routing and file access restrictions needed
some adaptations. At the end, the solutions found were quite simple and only affected
one or two lines of code. However, this scenario shows as a test environment as equal as
possible to the productive environment is preferable to save time in the migration phase
at the end of a project.

Another issue was the unfamiliar environment. On one hand PHP itself and on the
other hand the IT infrastructure were not well known. If time would be available it
could be very interesting to implement the PSR system with different frameworks than
Zend to give a detailed statement about which framework would be best. Currently, we
could only do so for small demo applications and by reading articles. Also, PHP was not
familiar at the beginning the language and coding style was easy to learn and a large
refactoring of the PSR system is not expected. Next to PHP also the infrastructure was
unknown where Norbert Wey gave a very good insight. This was important to minimize
the risk as a sub-process or even the whole process itself do not run as expected. As
example we take the File Organizer which needs access to the network path containing
the new scanned images and the network path containing the organized file structure of
the reposited images. Depending on the infrastructure we may not have enough rights
to read or copy the data.

Related to this issues it is also important to have a clear understanding of the overall
process and keep in regular touch with the stakeholders. To start with the implementa-
tion of an unclear process most probably lead to bad results. A well known example is
the multilingualism which has to be defined at the beginning of a project. The imple-
mentation at the end of a project is most probably not possible due the enormous time
effort needed for restructuring the application. Another issue is the changing interest
of the stakeholders during a project. If we stay in regular contact we can react on such
situations. One example was the ODBC interface of the Microsoft database. Also this
requirement was defined the connection did not work with the chosen solution in the
beginning.

62

CHAPTER 7. REFLECTION

The problem occurred as the needed PDO ODBC1 driver was missing and for security
reason its installation was not desired. As the problem was realized and discussed early
the ORM layer could be adapted to a pure ODBC connection.

7.1 General recommendations

During the modeling of the process several best-practices have been emerged which can
be adapted not only for the current project. Based on the reflection from above we
would like to give a summary about this practices:

� A pivotal question in the beginning of a software project is the programming
language and frameworks to use. It is wisely to use languages or frameworks
which are already known by the programming team and the stakeholder. This
is not only important for the understanding but also for the future maintenance
which is another important point to think about. As in our case the stakeholder
will maintain, use and maybe extend the software by himself the decision was clear
to use a programming language he is familiar with.

� Before we start programming we should understand and modeling the overall pro-
cess as detailed as possible so unexpected problems can be reduced to a minimum.
During the modeling phase the stakeholder have to be involved so a useful solution
can be realized. Also, not only the easiest case should be mentioned but also future
extensions and how to handle errors.

� The stakeholders should be involved as much as possible. This makes it possible
to react fast on misunderstandings and changing requirements.

� Trade-offs should be clear defined and discussed with the stakeholder. An example
was the implementation of the ORM layer. The layer implementation on one hand
needs effort but provides on the other hand not only programmatically advantages
but is also very flexible for further changes of the application.

� Widely used functions have to be implemented as early as possible and whenever
needed. Implementing e.g. the multilingualism or the ORM layer in a later stage of
the project needs an enormous amount of time and might not be possible anymore
due the complexity.

� The productive and development environment should be as close as even possible
to avoid unexpected problems during the migration phase.

1A driver implementation of the PHP Data Objects (PDO) interface which could access databases
through the ODBC interface. See also http://php.net/manual/en/ref.pdo-odbc.php

63

http://php.net/manual/en/ref.pdo-odbc.php

CHAPTER 8. BIBLIOGRAPHY

8 Bibliography

[1] F. H. Schröder et al., “Prostate-cancer mortality at 11 years of follow-up,” The
New England Journal of Medicine, vol. 366, no. 11, pp. 981–990, 2012. [Online].
Available: http://www.nejm.org/doi/full/10.1056/NEJMoa1113135

[2] E. Ebnöther and J. Hablützel, “Früherkennung von prostatakrebs,” http://www.
krebsliga.ch/de/shop /prostatakrebs d2.cfm, Krebsliga Schweiz, Effingerstrasse 40,
Postfach 8219, 3001 Bern, 2010, p. 7.

[3] D. Ilic, M. M. Neuberger, M. Djulbegovic, and P. Dahm, “Screening for prostata
cancer,” The Cochrane Collaboration, Review CD004720, 2013, cochrane Database
of Systematic Reviews 2013, Issue 1, p. 2.

[4] P. Kruchten, “The 4+1 view model of architecture,” in Software, IEEE,
vol. 12. IEEE, 1995, pp. 42–50, issue 6. [Online]. Available: http:
//ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=469759

[5] J. Goyvaerts and S. Levithan, Regular Expressions Cookbook. O’Reilly
Media, 2012, p. 15-23, ISBN: 9781449327484. [Online]. Available: https:
//books.google.ch/books?id=0Msuh5Vq-uYC

[6] M. Masse, REST API Design Rulebook, ser. Oreilly and Associate Series.
O’Reilly Media, 2011, p. 5-6, ISBN: 9781449310509. [Online]. Available:
https://books.google.ch/books?id=4lZcsRwXo6MC

[7] J. Paterson and S. Edlich, The Definitive Guide to db4o, ser. Books for professionals
by professionals. Apress, 2006, p. 142-148; 179-187, ISBN: 9781430201762.

64

http://www.nejm.org/doi/full/10.1056/NEJMoa1113135
http://www.krebsliga.ch/de/shop_/prostatakrebs_d2.cfm
http://www.krebsliga.ch/de/shop_/prostatakrebs_d2.cfm
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=469759
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=469759
https://books.google.ch/books?id=0Msuh5Vq-uYC
https://books.google.ch/books?id=0Msuh5Vq-uYC
https://books.google.ch/books?id=4lZcsRwXo6MC

CHAPTER 9. DECLARATION OF ORIGINALITY

9 Declaration of Originality

I hereby confirm that I am the sole author of the written work here enclosed and that I
have compiled it in my own words. Parts excepted are corrections of form and content
by the supervisor.

Date Signature

65

CHAPTER 10. APPENDIX

10 Appendix

10.1 Software construction tools

In a nowadays programming environment we expect to create a source code documen-
tation or the generation of UML diagrams within a few clicks. PHP does support such
software construction tools which are but often only available for a fee. For an open
source solution we recommend the following tools.

10.1.1 PHP UML

PHP UML is a tool for creating UML diagrams. However, the flexibility of the diagram
visualization is quite poor. To solve this circumstance we can also create an XMI1 file
which contains the available classes, its attributes, etc. This approach is similar to the
source code documentation under Microsoft Visual Studio which generates an XML file
with similar information. The XMI standard is defined by the Object Management
Group and is supported by many UML modeling tools, e.g. ArgoUML2.

To use PHP UML a PHP interpreter is required as well as the following packages:

� PHP UML 1.6.1
(http://pear.php.net/package/PHP_UML)

� Console CommandLine 1.2.0
(http://pear.php.net/package/Console_CommandLine)

� PEAR Exception 1.0.0beta1
(http://pear.php.net/package/PEAR_Exception)

The packages can be either installed by Pear itself or manually downloaded from the
website. If you download the content manually you can extract all the compressed
archives into a folder of your choice. Please verify as PHP UML can find the files of the
depended packages.

One thing to mention: In PHP UML 1.6.1 there is a bug which generates XMI files
not readable by most UML modeling tools. This is, because the elements inside the
XMI file hold an unique identifier which is calculated wrongly so the same identifier may
occur more than once. The bug is known under the ID #20153 (Increase ID entropy)
which also holds a solution for fixing the “SimpleUID.php” file3.

1http://www.omg.org/spec/XMI/
2http://argouml.tigris.org/
3http://grokbase.com/t/php/pear-bugs/13cmpnprnf/

66

http://pear.php.net/package/PHP_UML
http://pear.php.net/package/Console_CommandLine
http://pear.php.net/package/PEAR_Exception
http://www.omg.org/spec/XMI/
http://argouml.tigris.org/
http://grokbase.com/t/php/pear-bugs/13cmpnprnf/

CHAPTER 10. APPENDIX

10.1.2 PHPDoc

A well known and good source code documentation tool for PHP is the so called phpDoc-
umentor which is now available in the major version 24. As PHP UML you can install
the tool manually or by Pear. The tool is easy to use and you can directly start with
generating your documentation without the need of dependent packages. If you would
like to generate diagrams you have to install Graphviz which is available as open source
project under http://www.graphviz.org and register the folder “<graphviz dir>/bin”
to your “Path” environment variable. While using phpDocumentor 2.8.0 you may face
the following problems:

� The source code visualization of the generated documentation may not be loaded.
1. problem:
The phpDocumentor uses XMLHttpRequests for loading the source code dynami-
cally. To load local resources by Javascript however is not safe and may be blocked
by your browser. E.g. Firefox v.33 can open the source code directly while Chrome
v.38 has to be started with the option “–allow-file-access-from-files ”
2. problem:
All source code files are saved in a single folder. To simulate the path structure
the file names containing backslashes (using the ASCII code “%5C”) which may
not be resolved correctly by the browser. If so, the files have to be moved to the
corresponding folder structure manually or, preferable, by script.

� Parameters may be described correctly in the API documentation but generate an
error inside the API report anyway. This issue depends on the PHP version you
are using as uninitialized variables are interpreted in different ways. If you face
the problem described you have to change the file
“<phpDocumentor dir>/Plugin/Core/Descriptor/Validator/Constraints/Functions
/IsArgumentInDocBlockValidator.php”. On line 37 the value “$value→index” is
not initialized but used as an array index. If the variable is interpreted as an
integer, the index 0 is used and the application works as expected. Otherwise it
is interpreted as a string and the index “ ” is used (which is a valid index under
PHP). However, with the second interpretation the validation always throws an
error. You can fix this issue easily by casting the value: “(int) $value→index”.

� Several features are already documented inside the official manual5 but not yet
implemented. An example is the inline hyperlink which is only displayed as normal
text. The documentation says: “The effects of the inline version of this tag are
not yet fully implemented in PhpDocumentor2”6. Please verify tags first before
using them or if needed implement the functionality yourself.

The phpDocumentor is an active open source project so the above issues may (hopefully)
be fixed in the near future.

4http://www.phpdoc.org/
5http://www.phpdoc.org/docs/latest/index.html
6http://phpdoc.org/docs/latest/references/phpdoc/tags/link.html

67

http://www.graphviz.org
http://www.phpdoc.org/
http://www.phpdoc.org/docs/latest/index.html
 http://phpdoc.org/docs/latest/references/phpdoc/tags/link.html

CHAPTER 10. APPENDIX

10.2 Selenium test cases

The following tables describe the individual Selenium test cases which were success-
fully performed. For further information about the syntax please visit http://docs.

seleniumhq.org/docs/02_selenium_ide.jsp#script-syntax.

Import Test
open /dbimport/main
click xpath=(//button[@type=’button’])[2]
clickAndWait link=Translate XLSX to XML file
type name=input file C:\tmp\qry Screening Uebersicht alle 3 Runden.xlsx
clickAndWait id=submitbutton
click document.prepare.elements[’patient attribute fieldsets[0]’][1]
click document.prepare.elements[’patient attribute fieldsets[4]’][1]
click document.prepare.elements[’patient attribute fieldsets[5]’][1]
click document.prepare.elements[’diagnosis attribute fieldsets[1]’][1]
click document.prepare.elements[’diagnosis attribute fieldsets[2]’][1]
click document.prepare.elements[’diagnosis attribute fieldsets[3]’][1]
click document.prepare.elements[’diagnosis attribute fieldsets[6]’][1]
click document.prepare.elements[’diagnosis attribute fieldsets[7]’][1]
click document.prepare.elements[’diagnosis attribute fieldsets[8]’][1]
click document.prepare.elements[’diagnosis attribute fieldsets[9]’][1]
click document.prepare.elements[’diagnosis attribute fieldsets[10]’][1]
click document.prepare.elements[’diagnosis attribute fieldsets[11]’][1]
click document.prepare.elements[’diagnosis attribute fieldsets[12]’][1]
click document.prepare.elements[’diagnosis attribute fieldsets[13]’][1]
click document.prepare.elements[’diagnosis attribute fieldsets[14]’][1]
click document.prepare.elements[’diagnosis attribute fieldsets[15]’][1]
click name=add splitting criteria
select name=splitting criteria fieldsets[0][original title] label=Bx Nr Aarau
type name=splitting criteria fieldsets[0][first title] Box No.
type name=splitting criteria fieldsets[0][second title] Specimen No.
type name=splitting criteria fieldsets[0][regex] [0-9]+-[0-9]+
click name=add ext pid
click name=add specimen no
select name=specimen no fieldsets[index][column] label=Specimen No.
clickAndWait id=submitbutton
assertText css=div.container > div > ul > li 18 attributes were processed
assertText css=div.container > div > ul > li:nth-child(2) 637 rows were processed
assertText css=div.container > div > ul > li:nth-child(3) 11448 cells were processed
clickAndWait name=submit
click id=submitbutton
waitForText css=span.progress-value regexp:̂ımporting patients.*1[0-9]%.*$
waitForText css=span.progress-value regexp:̂ımporting patients.*2[0-9]%.*$
waitForText css=span.progress-value regexp:̂ımporting patients.*3[0-9]%.*$
waitForText css=span.progress-value regexp:̂ımporting patients.*4[0-9]%.*$
waitForText css=span.progress-value regexp:̂ımporting diagnoses.*6[0-9]%.*$
waitForText css=span.progress-value regexp:̂ımporting diagnoses.*7[0-9]%.*$
waitForText css=span.progress-value regexp:̂ımporting diagnoses.*8[0-9]%.*$
waitForText css=span.progress-value regexp:̂ımporting diagnoses.*9[0-9]%.*$
waitForText css=span.progress-value Import complete!
assertText css=div.container > div > ul > li 18 attributes were imported
assertText css=div.container > div > ul > li:nth-child(2) 636 patients were imported
assertText css=div.container > div > ul > li:nth-child(3) 636 diagnosis were imported
assertText css=div.container > div > ul > li:nth-child(4) 2697 specimens were imported
assertText css=div.container > div:nth-child(8) > ul > li None
assertText css=div.container > div:nth-child(11) > ul > li None

Table 10.1: Import test case

68

http://docs.seleniumhq.org/docs/02_selenium_ide.jsp#script-syntax
http://docs.seleniumhq.org/docs/02_selenium_ide.jsp#script-syntax

CHAPTER 10. APPENDIX

Print Test
open /barcode/main
click xpath=(//button[@type=’button’])[3]
clickAndWait link=Show all barcode printers
clickAndWait link=Add new printer
type name=type Zebra - USZ
type name=ip address 144.200.147.32
clickAndWait id=submitbutton
click xpath=(//button[@type=’button’])[3]
clickAndWait link=Create new print job
select name=search study label=1
type name=search specimen id 2349
type name=search bx no B2002
click name=search
type name=block id 1
click name=add block
select name=block label=1
type name=slice no 1-4
click name=add slice
select name=from slice label=1
select name=to slice label=3
click name=print barcode
assertNotVisible id=error-report
type name=search specimen id 15831
click name=search
click name=add block
select name=block label=1
type name=slice no 1-3
click name=add slice
select name=from slice label=1
select name=to slice label=3
click name=print barcode
assertNotVisible id=error-report
type name=search specimen id 12563
click name=search
click name=add block
select name=block label=1
click name=add slice
select name=from slice label=1
select name=to slice label=3
click name=print barcode
assertNotVisible id=error-report

Table 10.2: Print test case

69

CHAPTER 10. APPENDIX

Update Test
open /dbimport/main
click xpath=(//button[@type=’button’])[4]
clickAndWait link=Update metainfos of scanned images
type name=input file C:\tmp\ScanData Update.xml
click id=submitbutton
waitForText class=information 3 image(s) updated.
verifyText class=information 3 image(s) updated.
click css=div.modal-footer > button.btn.btn-default
click xpath=(//button[@type=’button’])[4]
clickAndWait link=Update annotations of scanned images
type name=input file C:\tmp\Annotation 169 Update.xml
click id=submitbutton
waitForText class=information 6 annotation(s) updated.
verifyText class=information 6 annotation(s) updated.
click css=div.modal-footer > button.btn.btn-default
click xpath=(//button[@type=’button’])[4]
clickAndWait link=Update annotations of scanned images
type name=input file C:\tmp\Annotation 182 Update.xml
click id=submitbutton
waitForText class=information 6 annotation(s) updated.
verifyText class=information 6 annotation(s) updated.
click css=div.modal-footer > button.btn.btn-default
click xpath=(//button[@type=’button’])[4]
clickAndWait link=Update annotations of scanned images
type name=input file C:\temp\Annotation 193 Update.xml
click id=submitbutton
waitForText class=information 6 annotation(s) updated.
verifyText class=information 6 annotation(s) updated.
click css=div.modal-footer > button.btn.btn-default

Table 10.3: Update test case

Analysis Test
open /analysis/main
click xpath=(//button[@type=’button’])[6]
clickAndWait link=Correlate data from study
select name=study label=1
select name=x axis label=Age at study entrance
select name=y axis label=Biopsy Gleason1
click name=correlate
waitForVisible id=plot
assertVisible id=plot

Table 10.4: Analysis test case

70

CHAPTER 10. APPENDIX

Export Test
open /dbexport/main
click xpath=(//button[@type=’button’])[5]
clickAndWait link=Export study from database
select name=study label=1
click document.export.elements[’attribute fieldsets[0]’][1]
click document.export.elements[’attribute fieldsets[2]’][1]
click document.export.elements[’attribute fieldsets[3]’][1]
click document.export.elements[’attribute fieldsets[4]’][1]
click document.export.elements[’attribute fieldsets[5]’][1]
click document.export.elements[’attribute fieldsets[6]’][1]
click document.export.elements[’attribute fieldsets[7]’][1]
click document.export.elements[’attribute fieldsets[8]’][1]
click document.export.elements[’attribute fieldsets[9]’][1]
click document.export.elements[’attribute fieldsets[10]’][1]
click document.export.elements[’attribute fieldsets[11]’][1]
click document.export.elements[’attribute fieldsets[12]’][1]
click document.export.elements[’attribute fieldsets[13]’][1]
click document.export.elements[’attribute fieldsets[14]’][1]
click document.export.elements[’attribute fieldsets[15]’][1]
click document.export.elements[’attribute fieldsets[16]’][1]
click document.export.elements[’attribute fieldsets[17]’][1]
click document.export.elements[’attribute fieldsets[18]’][1]
click name=exp specimes
click name=exp blocks
click name=exp slices
click name=exp images
click id=submitbutton
waitForText css=span.progress-value regexp:êxporting study.*5[0-9]%.*$

waitForText css=span.progress-value regexp:Êxport complete!$
waitForText css=h1 Export completed without errors.
assertText css=h1 Export completed without errors.

Table 10.5: Export test case

Remove Test
open /dbmngt/main
click xpath=(//button[@type=’button’])[7]
clickAndWait link=Remove study from database
select css=select[name=”study”] label=1
click name=delete study
click //input[@value=’Delete’]
waitForText css=div.errors None
assertText css=div.errors None
selectWindow null
clickAndWait css=#remove-report > div.modal-dialog > div.modal-content

> div.modal-footer > button.btn.btn-default

Table 10.6: Remove test case

71

CHAPTER 10. APPENDIX

10.3 Attached materials

This report is related to the following materials which are deployed together:

� Project definition (in German)

� User-manual for the PSR system

� Acceptance test

� Source code of the PSR system

� Source code of the File Organizer

� SQL script for creating the inventory database
(includes data of all currently scanned images)

� Source code documentation of the PSR system

� Source code documentation of the File Organizer

� Selenium test cases

� Excel report about the scanned tissue slides

72

	Abstract
	Abbreviations
	About the Document
	Project Definition
	Background
	Identification of requirements

	Acquisition Process
	Storing diagnosis data form research studies
	The underlying PHP framework
	Import diagnosis data from research studies
	Print bar codes
	Register scanned images to the database
	Register image annotations to the database
	Export data from the database
	Bring it all together

	Software Architecture
	The “Patho - Study and Research” system
	The File Organizer process
	Physical representation
	The 4+1 Architectural View Model
	Logical view
	Development view
	Physical view
	Process view
	Use case view

	Software Testing
	Function tests
	System test
	Security test

	Results
	Reflection
	General recommendations

	Bibliography
	Declaration of Originality
	Appendix
	Software construction tools
	PHP_UML
	PHPDoc

	Selenium test cases
	Attached materials

