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Abstract

This paper presents an approach to detecting later-
als which consists of three steps. First, pipe im-
ages are restored and enhanced by implementing
image processing techniques. Second, gray-scale
morphology, anisotropic diffusion filters and his-
togram thresholding are performed to segment can-
didate laterals. In the third phase, AdaBoost is
used to classify candidate laterals and its perfor-
mance is compared to Support Vector Machine and
K-NN. Experimental results show that AdaBoost
with twenty weak classifiers outperform other algo-
rithms. Our approach achieve about 90% test accu-
racy and has been tested on pipelines of 10, 000 me-
ters in length or about 6000 scanned images of real
sewer pipes from various cities all over the world.

1 Introduction

Communal sewer networks should be examined pe-
riodically (approx. every 8 years) for smaller and
larger damage, because on the one hand leaching of
fresh water is a waste of resources and on the other
hand a contamination of fresh water through for-
eign substances could be dangerous. Such regular
inspections of sewer network are time consuming
and hence expensive tasks. In order to better under-
stand the necessary effort, we regard here for ex-
ample the city Zurich. The sewerage watershed of
Zurich (and a few neighboring municipalities) cov-
ers about 60 square kilometers (lakes and forest ex-
cluded) and accommodates approximately 400, 000
inhabitants. The overall length of the public and
private sewers in this area is 950 and 3050 kilome-
ters respectively. While the ratio of one kilometer
of sewers per 100 citizens is quite high, the average
in developed countries, e.g. in the United States, is
about the half, one kilometer per 200 citizens.

For more than ten years, sewer network condition
assessment has been done by using closed circuit
television (CCTV) or more recently sewer scanner
elevation technology (SSET). Cameras mounted on
robots produce either video records or digital im-
ages of the pipe’s condition. The video records
are later evaluated by a human operator, and pipe
defects are classified against documented criteria.
Such an evaluation is very time consuming and fa-
tiguing. Therefore, semi or completely automated
sewer pipe condition assessment systems could re-
duce time consumption and focus human expertise
to interesting parts of the pipe. Because such a con-
dition assessment system is based on digital images
(Figure 1) and videos, analog video records have
to be sampled and preprocessed by domain specific
hard- and software. Our major industrial partner is
the Swiss company CDLab AG. CDLab develops
WinCan, a world-wide leading software in sewer
pipe assessment.

Figure 1: An original pipe image in color

A first step towards an automated sewer pipe
condition assessment system is the reliable au-
tomated detection of joints and laterals, because
leaks, cracks and fissures are often located near
joints and laterals. While a semi-automated sys-
tem leads the operator directly to potential defects
and uses the expert’s opinion, a completely auto-
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Figure 2: Schematic of our three-step lateral detection

mated system detects defects reliably. In our project
(founded by the Swiss Confederation’s innovation
promotion agency; CTI project numbers: 7785.2
ESPP-ES, 8641.1 ESPP-ES), we focused on image
preprocessing, joint and lateral detection, the very
basics of both semi and completely automated con-
dition assessment systems.

The research described in this paper is focused on
automatic Lateral Detection (LD) in real imagery
based on analog video records and digital images of
very different quality. In Section 1.1, we present re-
lated work of LD. In Section 1.2 we briefly describe
our approach to LD (Figure 2) and regard it as a
twofold challenge in computer vision and machine
learning. The first challenge is to distinguish the
different objects, i.e., to delineate regions in pipe
images corresponding to candidate laterals and seg-
ment them from these images. The second is to
discriminate real laterals from false ones in the set
of candidate laterals. We propose our three-step al-
gorithm including preprocessing, segmentation and
classification in Section 2, 3, and 4 respectively. In
Section 5 we show the experimental results of clas-
sifying candidate laterals with AdaBoost and com-
pare its performance with Support Vector Machine
(SVM) and K-NN (where K = 1 and K = 3). The
performance comparison is done in terms of ten-
fold cross validation which estimates the test errors,
whereas an independent test set is used to assess the
true test errors of different classifiers.

1.1 Related Work

Unlike joints detection, determination of where-
abouts of laterals turn out to be a more difficult
problem. Traditional segmentation methods such
as Hough transformation [1] and linear threshold-
ing do not fulfill our expectation. Though Hough
transformation works well with lines, it fails to dis-
criminate circular structures (e.g. laterals). Besides,
linear thresholding makes the assumption that dif-
ferent objects “reside” in distinguish positions in a
histogram, i.e., bimodal distributed, which is not of-
ten the case for pipe images with laterals. There-
fore, Hough transformation and linear thresholding
are only appropriate for joint detection [8].

Several papers [5, 9, 10] have proposed proce-
dures that comprise methods like Otsu’s threshold-
ing [6], gray-scale morphology [17], linear discrim-
inant functions, K-NN, and neural-fuzzy networks
[14, 16, 18]. These methods have delivered sound
results on their pipe image sets. Since these image
sets are often not available, we have to use our own
pipe image set instead. However, our experiment re-
sults show that those proposed methods work well
with our image set only in the cases where the lat-
erals are ideally shaped and colored (circular and
dark), but fail in many others due to the fact that
our pipe images span a wider range of characteris-
tics, i.e., image intensity, lateral size, lateral shape,
image noise, inhomogeneous background with non-



uniformed illuminations and a large variety of pipe
material types. Moreover, gray-scale morphology
introduces structuring element which often distorts
one of the lateral’s intrinsic properties, namely cir-
cular shape, whereas Otsu’s thresholding assumes
a bimodal distributed histogram and a uniformly il-
luminated image but neglects the fact that the pixel
count of a lateral (spatial coherence) in a pipe image
is bounded from above.

1.2 Our Approach

Our approach to LD is a three-step algorithm which
consists of preprocessing, segmentation and classi-
fication. First, the original RGB pipe images [ are
cut, rearranged, filtered, resized and cropped. We
name this first step as preprocessing and denote the
resulted images as [

Preprocess : I — T. 1)

Second, we filter the images T once by applying
gray-scale morphology and once anisotropic diffu-
sion, and then perform thresholding to binarize the
images. We use chain code algorithm [2] and re-
gion analysis to find positions of possible laterals,
subject to constraints such as pixel count and object
shape. We refer this second step as segmentation
which outputs n positions

Segment : I — (ix,jx), k € [1,n].  (2)

Third, for each position (i, j), centered at which
we create an image patch and name it as a candidate
lateral C (i, ji ). Given all candidate laterals, LD
now becomes a binary classification problem, i.e.,
to classify candidate laterals (image patches) into
two classes: presence or absence of laterals in these
image patches. We thus extract p features from each
candidate lateral and represent it as a feature vector
Xy, € X in a p-dimensional feature space X C R?

Extract : Cy — Xi = [Zh1, ., Thp) . (3)

We then construct the data set D containing these
n feature vectors. As for supervised learning, the
data set D is manually labeled with 41 (with later-
als) and —1 (without laterals) respectively and the
data is assumed to be independent and identically
distributed (i.i.d.)

Label : (xr,yx),yx € G ={-1,+1}. @)

Hence, the data set D can be represented as an
n x (p + 1) matrix whose k-th row is [x} , yx],
where n denotes the number of candidate laterals,
p represents the dimensionality of the feature space
and the 1 designates the label.

To avoid overfitting and estimate the test (gen-
eralization) error, we use K -fold cross validation,
where the data set D is randomly partitioned into
K equally sized subsets, from which the training set
T of sizet = |D|(1 — 1/K) and the independent
validation set V of size |D|/K are formed. In oder
to assess the test error of the final chosen model,
we use a test set M computed from a set of new
independent pipe images. Consequently, by apply-
ing the best model ¢* (classifier) selected by cross
validation to the test set M

Classify (&) : xx — yr, Xk € M, (%)
the true test error
Err = E[1{y # ¢"(M)}] (6)

of the final chosen model ¢* can be assessed, where
1{-} denotes the indicator function whose value is
1ify # ¢* (M), otherwise 0. Equation 6 therefore
expresses the expected prediction error over the test
set M. We denote this third step as classification
which produces the best model ¢* for future pre-
diction, and use AdaBoost, SVM and K'-NN as the
underlying classification algorithms.

2 Preprocessing

Different pipe inspection companies use different
robot systems, the resolution of raw images there-
fore varies from city to city. These undesirable
properties greatly complicate the segmentation of
pipe images. Therefore, preprocessing digital im-
age is required to make input images as homoge-
neous as possible (Figure 3). First, we cut the pipe
image vertically to make the width of each pipe im-
age be about three times of the ideal lateral radius
R obtained by averaging the radii of all candidate
laterals in the data set D. Then, we rearrange the
image so that the areas of water stain are replaced
at the top and bottom of the image. For efficiency
purposes, images are converted to gray scale. Next,
we resize the image according to R ensuring that
laterals will have similar sizes in pipe images. Last,
we crop the image to remove areas of water stain.
Preprocessed pipe images I retain key lateral prop-
erties, dark color and circular shape.
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Figure 3: Intermediate steps of preprocessing (the
lateral is marked with a white circle)

3 Segmentation

Segmentation is an important and difficult step in
LD, which determines the eventual success or fail-
ure of our consecutive classification step. The ob-
jective of segmentation is to subdivide pipe images
into regions where laterals are present and regions
where laterals are absent, i.e., we would like to
know which pixels make up a lateral in a particular
preprocessed pipe image. Dozens of segmentation
methods can be found in the literature. They range
from histogram based thresholding techniques [15]
over edge detection methods [17] and entropy based
approach to K-means clustering [14, 16, 19]. The
difficulty of segmentation, however, is that no uni-
versal technique is known that solve all segmenta-
tion problems. Domain specific knowledge is of-
ten required to find the best segmentation algorithm
for a particular problem. In general, segmentation
algorithms are based on one of two basic proper-
ties of intensity values: discontinuity and similar-
ity. Therefore, before segmentation, some edge pre-
serving filters should be applied. Such filters glob-
ally smooth the image and locally sharpen the edge
pixels, so that all pixels that form an object (lat-
eral) are clustered (similarity property) and edges
are preserved (discontinuity property).

Sinha et al. mentioned in one of their papers [10]
that some of the above methods failed to segment
pipe images and proposed the combination of gray
scale morphology (an edge preserving filter) and
Otsu’s thresholding as the underlying segmentation
algorithm. But one disadvantage of gray-scale mor-

phology is its introduction of undesirable structure
in the filtered image, which often confuses the seg-
mentation. Besides, Otsu’s thresholding makes the
assumption that histograms are bimodal and images
are uniformly illuminated. Since these conditions
do not apply to our pipe images, we use anisotropic
diffusion in addition to gray-scale morphology to
boost the overall segmentation performance. How-
ever, pipe images are still so noisy after prepro-
cessing and filtering that simple thresholding fails.
We thus introduce the region of interest, where we
apply our own histogram thresholding instead of
Otsu’s to perform segmentation.

3.1 Gray-Scale Morphology

Because preprocessing preserves the key lateral
properties, dark color and circular shape, we use the
closing operator of gray-scale morphology with cir-
cular structuring element. Gray-scale morphology
is an extension to basic binary morphology. Both
input image I = f(4, j) (preprocessed image) and
structuring element B = (4, 7) are treated as func-
tions. The closing operator is simply the dilation
of f by b which produces an image that is brighter
than the original and in which small and dark de-
tails have been reduced or eliminated, followed by
an erosion of the result by b which darkens the im-
age without reintroducing the details removed by
dilation. Therefore closing operator closes gaps,
smooths contour sections, fuses narrow breaks and
long thin gulfs, as well as eliminates small dark de-
tails in pipe images, whereas it simultaneously en-
hances the geometry and intensity properties of a
particular lateral. Figure 5a shows a result of mor-
phological closing.

3.2 Anisotropic Diffusion

An undesirable effect of gray-scale morphology is
the strong geometric influence of a circular structur-
ing element, which results in unwanted lateral-like
pixel clusters. Anisotropic diffusion [7] avoids this
effect.

To investigate the temporal change % of the gra-
dient f; in 1D we arrive at

8 1 2 !
&fi =¢"(fi)fii + & (fi) fiui @)

where ¢(f;) is the flow function. Assume that at
the location of an edge, the second derivative is zero



and the third derivative is negative. The right-hand
side of equation 7 can be simplified to ¢'(f;) fiii-
Hence we obtain

' (fi) > 0= %fi <0 smoothing, (8)

& (fi)<0= %fl >0 sharpening. (9)
For LD, we set the diffusion coefficient of
anisotropic diffusion to exp(—f?/2x?), and obtain
/ 12 1
o(fi) = eXP(*ng)(l - ﬁ)- (10)
Since ¢’ (f;) is zero at f; = K, ¢'(f;) is positive for
fi < K, and negative otherwise, we have sharpening
for f; > k. We set k according to the minimal edge
strength calculated from the data set. It provides
a threshold separating regions where smoothing is
needed from regions where sharpening is needed. In
Figures 5a and 5c a clear difference can be seen be-
tween gray-scale morphology with a circular struc-
turing element of radius = 5 pixels and anisotropic
diffusion with ten iterations of step size 0.2 and
K = 15.

3.3 Normalization and Thresholding

The goal of thresholding is to binarize the filtered
image and make all lateral pixels as “foreground”
object (black pixels) and all other pixels as “back-
ground” object (white pixels) based on disconti-
nuity and similarity properties assured by apply-
ing gray-scale morphology and anisotropic diffu-
sion filters. However, for filtered images as in Fig-
ures 5a and Sc, simple global thresholding fails be-
cause the lateral only resides in a small fraction of
the image and dark pixels can be distributed any-
where, i.e., no bimodal distribution in the image.
We therefore impose a constraint that is dictated by
neighborhood size. The larger the size of the neigh-
borhood, the stronger the constraint, and the more
sensitive the solution is to the particular choice of
constraint. The trade-off between large and small
size is resolved by defining an appropriate neigh-
borhood such that the histogram analysis becomes a
local estimation which simplifies thresholding. For
LD, we denote the region whose width is about
twice of the R, and height is about the half of the
filtered pipe image, as the region of interest (ROI),
and define it as the ideal neighborhood in which we
apply thresholding. Figure 4a shows the overlapped

ROIs with their corresponding histograms after slic-
ing the filtered pipe image into three.

To further simplify thresholding and make his-
tograms “look” similar, we normalize ROIs. Most
ROIs have intensity values between 0 and 255 af-
ter gray-scale morphology. We use simple contrast
normalization method to ensure that the histogram
of each ROI is shifted to zero and its highest inten-
sity value is less or equal to z = 85 as formulated
in Equation 11, where Iro; denotes a ROL, gmin
as well as gmax are the smallest and largest pixel
values in the ROI, and T, » 1s the normalized image.

~ ~ min Z; gmax — (min
I, — (IROI — gmin) - (2.9 Ginin)

an

Gmax — Qmin

i MR,

a) Images after morphology b) Images after normalization
and their histograms and their histograms

Figure 4: Depicts ROIs with their histograms. The
top two ROIs on each side contain laterals.

The histogram of a ROI with a lateral differs from
those without laterals after gray-scale morphology
and normalization. Since the normalized histogram
of a ROI has an exponential decay form in the most
left part of the histogram (Figure 4b), our thresh-
olding algorithm only investigates the lowest five
intensity vales and chooses the brightest one sub-
ject to the empirical valleyValue.

For images filtered by anisotropic diffusion, no
normalization (Equation 11) is needed. The thresh-
olding algorithm simply counts the pixel values
in the histogram from left-hand side to right-hand
side and stops at the position where the total pixel
counts exceeds a certain threshold determined by
the largest lateral (with the largest pixel count) in
the data set.

These two versions of our thresholding algo-
rithms work due to the facts that lateral pixels are
clustered in disjoint classes and laterals have the
darkest pixels with circular edges in a pipe image.
Figures 5b and 5d depict the results of the same pipe



image after theses two versions of algorithms. Fig-
ure 5d shows five objects, three of which are obvi-
ous not laterals because of their sizes. The one on
the top is not a lateral either as far as roundness is
concerned. Therefore, we use chain code algorithm
to search black pixel clusters and perform region
analysis to eliminate apparent errors such as huge
diameters, distorted aspect ratios, skewed round-
ness and unrealistic form factors.

a) Image after

b) Image after

c) Image after

d) Image after

morphology ~ morphology  anisotropic anisotropic
and binari- diffusion diffusion and
zation binarization

Figure 5: Binary images after gray-scale morphol-
ogy (b) and anisotropic diffusion (d)

3.4 Region Analysis

Region analysis is based on some lateral features
in binary images and is performed by checking
whether these feature values satisfy the conjunction
of the following constraints.

Feature Name  Constraints
height (0,(R+1) 6]
width (0,(R+1)-6]
aspectRatio (555, 6.25]
roundness [0.5,2.0]
formFactor [0.5,2.0]

Table 1: Decision boundaries

Width and height are calculated directly from
the chain code algorithm. Once they are deter-
mined, the aspect ratio is defined as the ratio be-
tween these two values. Roundness addresses the
circular geometry of a lateral, which is computed as
Roundness = 4- Area/n/ Length?, where Area
is estimated by chain code and Length is the aver-
age of width and height. An ideal lateral is a circle

and hence its Roundness value is 1.0. Form factor
addresses the disk-form of a lateral and is calculated
as FormFactor = 4 - Area/Perimeter®. An
ideal lateral results in a F'orm Factor value of 1.0.

By our region analysis we obtain n positions of
possible laterals. For each position (ik, jk), k €
[1,n], centered at which we create an RGB im-
age patch (Figure 6) whose width and height are
about three times of R and name it as a candi-
date lateral Cy (ix, jx ). Given all candidate laterals,
LD becomes a binary classification problem, i.e.,
to classify candidate laterals (image patches) into
two classes: image patches with laterals and image
patches without laterals.

Figure 6: Candidate laterals

4 Classification

In previous sections we have shown the first two
phases of our three-step algorithm. If the pipe
image set were easy to separate, i.e., the laterals
were perfectly shaped and colored, then the sec-
ond step (segmentation) would suffice to detect lat-
erals. Since our pipe image set spans a wider
range of characteristics, segmentation alone is inad-
equate. Consequently, we use supervised learning
techniques in addition to classify candidate laterals.

4.1 Feature Extraction

Feature extraction is to abstractly characterize ob-
jects (candidate laterals) by measurements whose
values are very similar for objects in the same class,
but very different for objects in a different class.
The choice of the distinguishing features is a critical
design step and depends on the characteristics of the
problem domain. Besides, feature extraction is also
an art, because once ideal features are found, then
the job of the classifier becomes trivial. Sinha et al.



have used prior knowledge of laterals in the binary
image domain to extract features such as size, form
factor, aspect ratio, and area in their papers [9, 10].
For our LD, we would like to capture more intrin-
sic properties of laterals not only in the domain of
binary images but also in the domain of gray-scale
and RGB images. We thus propose nine new fea-
tures in addition to Roundness and FormFactor,
and describe the two most important ones in detail.

4.1.1 Monte Carlo Area (MCA) and Random
Area (RAE)

We use Monte Carlo method to estimate the possi-
bility of being a lateral. First, we randomly select a
pixel at a position (%, j) within the rectangular area
(RA) of a candidate lateral and calculate whether
2+ i 2 < R?, and then check whether the pixel at
(i, 7) is darker than a random pixel outside the RA.
If true, we increase a counting variable n. We repeat
this random procedure m times, then the estimated
area of solution (AOS) is n/m-RA. AOS should be
close to the value of optimal region (OR) defined by
(nr?)/RA. The relative error is used as a measure
of MCA, i.e., MCA = |(AOS —OR)/OR|. RAE
is a short version of MCA. It is the ratio between
the counting variable n and the number of random
procedure m.

4.1.2 Spatial Variation of Color (VAR) and
Random Color Variation (RCV)

Inside a lateral we assume a homogeneous color
distribution. Therefore, VAR (or RCV) is an appro-
priate measure to estimate the presence of a lateral.
To quantify VAR (or RCV), we calculate the aver-
age of the sum of euclidean distances in RGB color
space between the center pixel (i, jr) of a candi-
date lateral C), (image patch) and each pixel in the
5 x 5 neighborhood (or a random selected neighbor-
hood for RCV). An image patch with a true lateral
has a lower value of VAR (or RCV).

4.1.3 Other Features

Neighbor Color Ratio (RTO) is computed by tak-
ing the ratio between given points and their four
neighbors (East, West, South, North). The average
of these ratios is RTO. Random Ratio (RRO) is the
ratio between n random points and their neighbors,

the average of which is RRO. Monte Carlo Neigh-
bor Color Ratio (MNR) differs from RRO in that
the neighbor points are not within the same area, but
outside. Clock (CLK) denotes the clock position of
a candidate lateral in the pipe image.

4.1.4 Feature Representation

Each candidate lateral is represented as a feature
vector in an eleven dimensional feature space. All
these feature vectors are depicted in a scatterplot
matrix in Figure 7, where LTL denotes the later-
als (output of the classification). Feature abbrevia-
tions used in the scatterplot are summarized in table
2 with their corresponding feature names.
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Figure 7: Scatterplot matrix of feature vectors (can-
didate laterals)

4.2 Classification with AdaBoost

Many classification algorithms are available in the
literature. Algorithms such as SVM [14] and Ada-
Boost [14, 16] are prevailing in the pattern recogni-
tion community. However, these algorithms found
their applications mostly in areas of face detection
[11], real-time tracking and signal classification.
For LD, Sinha et al. have used pairwise discrimi-
nant function in [10], K-NN and neuro-fuzzy net-
work in [9]. We prefer AdaBoost for their better
performance, adaptability and solid statistical learn-
ing background.



Feature Name Abbreviation
Monte Carlo Area MCA
Spatial Variation of Color VAR
Random Color Variation RCV
Neighbor Ratio RTO
Random Area RAE
Random Ratio RRO
Monte Carlo Neighbor Ratio MNR
Clock CLK
Maximum Gradient MGD
FormFactor FFR
Roundness RDN

Table 2: Feature Abbreviations

Boosting is one of the most powerful learn-
ing algorithms. It is a procedure that combines
“weak” classifiers to produce a powerful “ensem-
ble”. The most popular boosting algorithm is called
AdaBoost.M1 and was proposed by Freund and
Schapire [3]. A weak classifier means that it per-
forms only slightly better than random guessing in
terms of error rate. The purpose of boosting is to
apply weak classification algorithms sequentially to
modified versions of data, producing a sequence
of weak classifiers ¢y(x),b € [1, B], so that the
weighted sum of these weak classifiers produce the
final classifier

ép(x) = sign <Z abcb(x)> (12)

where oy, are computed by the AdaBoost algorithm.
The weights a; give high influence to the more ac-
curate classifiers in the sequence.

A decision stump is a two-terminal node classifi-
cation tree ¢y (x)

+1 Thp > t9p

13
—1 otherwise a3

co(Tr,ps Op) = {

and can be used as a weak classifier. Since the de-
cision stump ignores all entries of xj except Ty p,
it is equivalent to a linear classifier operating in
the pth dimension of the lateral’s feature space.
The separating hyperplane is orthogonal to the pth
axis, with which it intersects at zx, = 6. To
train the stumps, cumulative sum is used to deter-
mine the extremum 6,,. First the data is sorted in
ascending order along the pth dimension. Then,

Weum = Z{k‘kagep} Yk is computed, i.e., the
sum of weights on the left side of the threshold,
while progressively shifting the threshold to the
larger elements. Last, 0; is the extremum of Weym
and whose sign determines the orientation of the
separating hyperplane.

We use discrete AdaBoost.M1 [4] with decision
stumps to classify candidate laterals and apply the
learning rule

(p*,0") = arg minZizl wil {ytk # cb(Thp, Op) }
P.0p > k1 Wk

(14)
where 6* = {6, | p = 1..11}, t is the size of
the training set and wy, is the data weight. In the
training routine, the optimal parameter 6, is found
for each dimension p, and then the p™ is selected for
which Equation 14 is minimized.

4.3 Cross Validation (CV)

We use tenfold cross validation to estimate the test
(generalization) error and avoid overfitting. The
data set D is randomly partitioned into 10 almost
equally sized subsets d; such that u%ﬁldi =D, and
d; Nd; = 0 fori # j, where |d;| = n/10 forms
the validation set V. The data of size n — |d;| with
indices not in d; forms the training set 7 which is
used to fit the classifier (& B);id‘zl)i |- In other words,
for the ¢th part (validation set), the model is fitted
to other 10 — 1 parts (training set) of the data, and
the validation error of the fitted model is calculated
when predicting the ith part of the data. This pro-
cedure is repeated for ¢ € [1,10] and the 10 errors
are averaged. Therefore the tenfold cross validation
error CV is

10
107" S il = ST 1w # (8), ) ()
i=1 ked;
15)
Having applied tenfold cross validation, the optimal
ensemble model is found by calculating
¢p = arg min CV

égpeC

16)

where C' is the class of models and ¢3 is the Ada-
Boost final ensemble model. Usually a local min-
imum (parsimonious model) instead of the global
one is chosen for ¢5;. The model ¢ that minimizes
Equation 16 gives the optimal model complexity in
the sense of bias and variance decomposition [19].



Moreover, CV estimates the test error whose true
value is assessed by applying the chosen model ¢
to the test set M as shown in Equation 6.

S Experimental Results

We have applied our three-step algorithm to
pipelines of 10,000 meters in length or about 6,000
scanned images of real sewer pipes, where all lat-
erals are manually detected and labeled for train-
ing purpose. These images are first preprocessed,
and second about nine hundred candidate laterals
are segmented from them by applying gray-scale
morphology and anisotropic diffusion filters. Third,
each candidate lateral is represented as an eleven
dimensional feature vector and AdaBoost is used to
classify these nine hundred feature vectors into two
classes.

In the phase of classification, we use a training
set to fit the model and observe that the more com-
plex the model (sufficiently many weak classifiers),
the lower the training error is. Figure 8 shows an
apparent decreasing trend of error rates when per-
forming AdaBoost on the training set. With 430
weak classifiers, the training error is zero (the green
curve as a function of the number of weak clas-
sifiers). However, for zero training error we ex-
pect performance degradation on test set because
of overfitting. To avoid it, we apply tenfold cross
validation. One standard error bars are included for
tenfold cross validation which is shown as the blue
curve in Figure 8. To evaluate the true test error,
we use an independent test set M obtained from
new pipe images (about 250 new candidate laterals)
and plot it as the red curve in Figure 8. We observe
that the test error curve tracks the tenfold cross val-
idation quite closely, which implies that the tenfold
cross validation is indeed a good estimation of the
true test error for our pipe images.

AdaBoost is robust in the sense that the tenfold
cross validation error curve stabilizes after b > 20,
where b is the number of weak classifiers. Since
“one standard error” rule is often used with tenfold
cross validation, we choose the most parsimonious
model whose error is no more than one standard er-
ror above the error of the best model. Therefore, the
optimal parsimonious model can be found around
b = 20. We choose the model at b* = 20 with
8.7% test error (£2.9% standard error) as the fi-
nal model for future prediction and observe that true
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Figure 8: Training, validation and test errors

test error of the final chosen model is 9%. The en-
larged version (Figure 9) of Figure 8 depicts this
fact. An alternative view of AdaBoost’s robustness
is that only eight features (without RTO, RRO and
RDN) are effectively selected for the chosen model
with 20 weak classifiers.
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Figure 9: Errors, enlarged version

5.1 Comparison

We compare the performance of AdaBoost to non-
linear SVM (Gaussian RBF kernel) and K -NN. Ob-
viously, for K-NN, where K = 1, we have zero
training error. SVM can also make the training error
as small as zero. Like AdaBoost, we are interested



in the prediction power on unseen data, therefore
we also apply tenfold cross validation to find the
optimal regularization parameter for SVM. Table 3
(Cross Validation error with one standard error: CV,
and Test Error: TE) summarizes the performance of
AdaBoost, SVM and K-NN (where K = 1 and
K = 3). AdaBoost with 20 weak classifiers outper-
forms other methods which achieves 100 — 9 = 91
percent accuracy on the test set M.

Method CvV TE
AdaBoost 8.7 £2.9 9
SVM 132+21 152
1-NN 156 +23 18.1
3-NN 133+£23 163

Table 3: Comparison: Errors (%)

Preprocessing and segmentation (the first two
steps) cause about one percent misclassification er-
ror, because not all laterals are successfully seg-
mented from pipe images (extremely distorted lat-
erals have neither circular shape nor dark color), the
overall accuracy of our three-step algorithm is thus
about 90%. It is worth mentoning that LD is primar-
ily concerned wih the classification error, although
false positive and false negative can be applied to
denote the classification error separately.

6 Conclusion and Future Work

We have demonstrated our three-step approach to
detecting laterals. Although the three steps in our
algorithm are dependent, it can be regarded as a
plug-in algorithm. In other words, classification ac-
curacy may be improved by modifying each sin-
gle step of the algorithm, i.e., use specific prepro-
cessing methods like Fischer discriminant analysis
[10], implement other edge-preserving low pass fil-
ters such as bilateral filter [12], or apply sophis-
ticated segmentation algorithms like saliency de-
tection [13] or K-means. Moreover, new features
might be found that better depict the intrinsic prop-
erties of laterals and thus achieve lower classifica-
tion error. Last, a variant of AdaBoost or other
classification algorithms may perform better on our
pipe images.
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