Hauptinhalt überspringenNavigation überspringenFooter überspringen
Logo der Fachhochschule Nordwestschweiz
Studium
Weiterbildung
Forschung und Dienstleistungen
Internationales
Die FHNW
De
Standorte und KontaktBibliothek FHNWKarriere an der FHNWMedien

      Logo der Fachhochschule Nordwestschweiz
      • Studium
      • Weiterbildung
      • Forschung und Dienstleistungen
      • Internationales
      • Die FHNW
      De
      Standorte und KontaktBibliothek FHNWKarriere an der FHNWMedien
      Module
      Einführung in die Theoretische Informatik

      Introduction to Theoretical Computer Science

      Number
      eti
      ECTS
      3.0
      Level
      intermediate
      Overview
      The module introduces the fundamental ideas and problems of the theoretical foundations of computer science.
        Formal Languages:
      • Repetition: Languages, decision problems, grammars, Chomsky hierarchy
      • Finite automata and regular languages, (DFA, NFA and minimal DFA), pumping lemma, proposition of Myhill and Nerode
      • Regular expressions
      • Context-free languages
        Theory of computation:
      • Models of computation (Turing machines, recursive functions, loop-, while- und goto-programs)
      • Church-Turing thesis
      • Decidability and recursive enumerability
      • Universal Turing machines
      • Undecidability
      • Reduction
      • Rice’s theorem
        Complexity:
      • Complexity classes
      • Polynomial reduction
      • Problems in P and NP
      (The order and emphasis of the topics are left to the lecturers.)
      Learning objectives
      • Formal Languages: Students:
      • are able to describe languages with grammars, understand the Chomsky hierarchy and are able to classify languages according to this hierarchy;
      • know the properties of regular languages and are able to transform a regular expression to a non-deterministic automaton as well as to a minimal deterministic automaton;
      • can, in simple cases, apply the pumping lemma and the proposition of Myhill and Nerode to recognize that a language is not regular;
      • are able to bring a context-free grammar to Chomsky normal form and decide the word problem with the Cocke-Younger-Kasami-algorithm.
      • Theory of computation: Students:
      • know some important models of computation and are able to explain the Church-Turing thesis. Students:
      • know the notions of decidability and recursive enumerability and understand the concept of a universal Turing machine;
      • can explain what an undecidable language is and know some important examples;
      • know the notion of reduction, are able to do reductions in simple cases and to explain the Theorem of Rice.
      • Complexity: Students:
      • can explain what a complexity class is and know some examples;
      • are aware of the importance of the classes P and NP, know important problems in these classes and understand polynomial reduction.
      Previous knowledge
      • Module Mathematics for Computer Science (mgli),
      • English level B2 (e.g. passed Module ten1)
      Exam format
      Continuous assessment grade
      (German Version)

      Studium

      Angebot

      • Studium
      • Weiterbildung
      • Forschung & Dienstleistungen

      Über die FHNW

      • Hochschulen
      • Organisation
      • Leitung
      • Facts and Figures

      Hinweise

      • Datenschutz
      • Accessibility
      • Impressum

      Support & Intranet

      • IT Support
      • Login Inside-FHNW

      Member of: