Skip to main content

Modulbeschreibung - Analysis II

Nummer
01080
Leitung Lorenz Frey
ECTS 3.0
Unterrichtssprache Deutsch
Lernziele/Kompetenzen Studenten können selbständig praktische Problemstellungen mit Hilfe der gelernten mathematischen Methoden korrekt formulieren, analysieren und lösen.
Beherrschung der Grundrechenarten mit komplexen Zahlen in verschiedenen Darstellungen. Theorie der Fourier-Zerlegung verstehen und anwenden auf einfache Beispiele. Anwendung der mehrdimensionalen Infinitesimalrechnung zur Berechnung partieller Ableitungen, Bestimmung von Extremalwerten und mehrdimensionaler Integrale. Lösen einfacher gewöhnlicher Differenzialgleichungen 1. und 2. Ordnung mit verschiedenen Lösungsansätzen.
Lerninhalte Komplexe Zahlen
  • Gauss'sche Zahlenebene, Betrag einer komplexen Zahl
  • verschiedene Darstellungsformen, Grundrechenarten, Radizieren

Fourier-Reihen
  • 2 -periodische Funktionen, gerade/ungerade Funktionen
  • T-periodische Funktionen

Funktionen mehrerer Variablen
  • Definition und Beispiele, explizite/implizite Funktionen
  • Darstellung als Fläche im Raum, Schnittkurvendiagramme
  • Skalarfelder und Vektorfelder

Differenzialrechnung mit Funktionen mehreren Variablen
  • partielle Ableitungen, geometrische Interpretation, Linearisierung
  • implizite Ableitung, Extremalwerte

Integralrechnung mit Funktionen mehreren Variablen
  • Doppelintegrale, Flächen/Volumenberechnungen
  • Schwerpunktberechnungen, Umrechnung auf Polarkoordinaten
  • Dreifachintegrale, Volumenberechnungen, Zylinderkoordinaten

Gewöhnliche Differenzialgleichungen
  • Allgemeine DGL 1. Ordnung, geometrische Betrachtungen
  • Lineare DGL 2. Ordnung, charakteristisches Polynom
  • Lösungsmethoden: Substitution, Separation, Variation der Konstanten

Erforderliche Vorkenntnisse B-LST-A 01 020
Bibliographie/Literatur Empfohlen:
  • L. Papula; Mathematik für Ingenieure und Naturwissenschaftler (Band 2); Vieweg + Teubner

Modultyp Pflichtmodul
Lehr- und Lernmethoden Präsenzunterricht, Übungen, Selbststudium
Leistungsbewertung gemäss Modulverzeichnis der aktuellen StuPro
Diese Seite teilen: