Hauptinhalt überspringenNavigation überspringenFooter überspringen
Logo der Fachhochschule Nordwestschweiz
Studium
Weiterbildung
Forschung und Dienstleistungen
Internationales
Die FHNW
De
Standorte und KontaktBibliothek FHNWKarriere an der FHNWMedien

      Logo der Fachhochschule Nordwestschweiz
      • Studium
      • Weiterbildung
      • Forschung und Dienstleistungen
      • Internationales
      • Die FHNW
      De
      Standorte und KontaktBibliothek FHNWKarriere an der FHNWMedien

      Unsere nächsten
      Infoanlässe
      Jetzt anmelden!

      Weiterbildung Informatik
      Fachvertiefungsmodule Data Science
      Modul: Explainable AI

      Modul: Explainable AI

      Schaffe Vertrauen in dein (Blackbox-)Modell und finde weitere Optimierungsmöglichkeiten dank dem Verständnis, welche Kriterien der Algorithmus bei seiner Entscheidung wie stark gewichtet hat.

      Eckdaten

      ECTS-Punkte
      2,5
      Nächster Start
      30.8.2025
      Dauer
      2 Unterrichtstage
      Unterrichtstage
      Sa.
      Unterrichtssprache
      Deutsch
      Durchführungsort(e)
      FHNW Campus Brugg-Windisch
      Preis
      CHF 1500.–
      Jetzt anmelden

      Mobile navi goes here!

      Allzu häufig wird bei Machine Learning das Hauptaugenmerk auf einen zu optimierenden Wert (z.B. Accuracy, RSME) gelegt, um das beste Modell für einen Anwendungsfall zu finden. Vernachlässigt wird leider immer wieder zu untersuchen, welche Schlüsselfaktoren der Algorithmus schlussendlich verwendet, um diesen optimalen Wert zu erreichen. Hinzu kommt, dass dies bei komplexeren Modellen wie Ensembles oder Neuronalen Netzen, die sehr häufig auch gute Resultate liefern, schwerer ist, da die gewichteten Faktoren nicht einfach anhand der Parameter abgelesen werden können.

      Nachfolgendes Beispiel aus der Publikation „‘Why should I trust you?‘ Explaining the Predictions of Any Classifier“ zeigt beim Klassifikationsproblem „Wolf oder Husky“, welche Pixels den Algorithmus bei seiner (Fehl-)Entscheidung am meisten beeinflusst haben: Der Schnee im Hintergrund und nicht das Tier selbst.

      Dieser Blick hinter die Kulisse mit Hilfe von Explainable AI ist von unschätzbarem Wert. Im obigen Beispiel kann der Algorithmus dank der durchgeführten Untersuchung nun optimiert werden, da die Trainingsdaten zu einseitig waren. Wenn den Trainingsdaten weitere Bilder von Huskys im Schnee hinzugefügt werden, muss der Algorithmus für die korrekte Klassifizierung andere Faktoren als der Schnee stärker gewichten, um somit besser zu generalisieren.

      Ein weiterer Hauptnutzen von Explainable AI ist, dass diese Transparenz auch Vertrauen bei Vorgesetzten und Kunden schafft, da nachvollzogen werden kann, weshalb der Algorithmus so entscheidet. In verschiedenen Bereichen wie beispielsweise der Medizin oder Strafrecht ist bei der Anwendung von ML fundamental, die Beweggründe des Algorithmus nachvollziehen zu können. Spätestens seit der Einführung der DSGVO haben EU Bürger das Recht auf Erklärung bei automatisiert getätigten Entscheidungen durch Algorithmen.

      Modulübersicht

      In diesem Kurs lernst du einerseits, welche simpleren Machine Learning-Modelle wie interpretiert werden können, aber auch verschiedene generell anwendbare und Model unabhängig Techniken, um die Entscheidungsgrundlagen auch für komplexere Modelle wie Ensembles oder Deep Learning offen legen zu können.

      Lernziele
      • Du weisst, wie «Interpretierbarkeit» im Kontext von ML zu verstehen ist.
      • Du weisst, welche simpleren Modelle interpretierbar sind und wie du diese interpretieren kannst.
      • Du kennst verschiedene Modell-unabhängige Ansätze («Model agnostic methods» oder «Example based explanations») und kannst diese anwenden, um neben den simplen Modellen auch komplexere wie Ensembles oder Neuronale Netze zu interpretieren.
      • Du kennst neben bewährten Techniken auch die neusten Entwicklungen im Bereich «Explainable AI».
      Technologien

      Python

      Erwartete Vorkenntnisse

      Erwartet wird, dass die Teilnehmenden die Grundkenntnisse zu linearer Algebra, Wahrscheinlichkeitsrechnung und Machine Learning mitbringen. Die Teilnehmenden müssen in der Lage sein, Machine Learning mit Python durchzuführen und kennen dafür eingesetzte Standard-Libraries wie numpy oder sklearn.

      Kursvorbereitungen

      Als Kursvorbereitung wird empfohlen, sich nochmals mit linearer Algebra auseinanderzusetzen.
      Bitte plane etwa 8 Stunden für die Vorbereitung.

      Weitere Informationen

      Abschluss

      Du erhältst in jedem Fall eine Teilnahmebestätigung. Falls du in der festgelegten Leistungsbeurteilung mindestens eine genügende Leistung erbringst, erhältst du einen Nachweis, dass du das Modul erfolgreich bestanden hast.

      Teilnehmenden des DAS- oder MAS-Data-Science-Weiterbildungslehrgangs werden die entsprechenden ETCS-Punkte angerechnet.

      Unterrichtstage
      • 30.8.2025
      • 6.9.2025
      Mindestteilnehmerzahl

      8 Teilnehmende

      Kosten

      CHF 1500.–

      Downloads & weitere Informationen

      Programm-Reglement Weiterbildung Data Science

      Weiterbildung

      Weiterbildung Informatik
      Module Data Science
      Patrizia Hostettler

      Patrizia Hostettler

      Sekretariat Weiterbildung

      Telefonnummer

      +41 56 202 72 18

      E-Mail

      patrizia.hostettler@fhnw.ch

      Adresse

      Fachhochschule Nordwestschweiz FHNW Hochschule für Technik und Umwelt Hochschule für Informatik Klosterzelgstrasse 2 5210 Windisch

      Michael Henninger

      Prof. Michael Henninger

      Leiter Data Science Weiterbildung

      Telefonnummer

      +41 56 202 99 55

      E-Mail

      michael.henninger@fhnw.ch

      Adresse

      Fachhochschule Nordwestschweiz FHNW Hochschule für Informatik Bahnhofstrasse 6 5210 Windisch

      ht_wbt_das_ds_moduleht_wbt_das_das_module_hs

      Hochschule für Informatik FHNW, Brugg-Windisch

      Fachhochschule Nordwestschweiz FHNW
      Hochschule für Informatik

      Bahnhofstrasse 6

      5210 Windisch

      Telefon+41 56 202 90 00

      E-Mailinfo.informatik@fhnw.ch

      Mehr Infos zum Standort

      Angebot

      • Studium
      • Weiterbildung
      • Forschung & Dienstleistungen

      Über die FHNW

      • Hochschulen
      • Organisation
      • Leitung
      • Facts and Figures

      Hinweise

      • Datenschutz
      • Accessibility
      • Impressum

      Support & Intranet

      • IT Support
      • Login Inside-FHNW

      Member of: