Prof. Dr. Michael de Wild
Prof. Dr. Michael de Wild
Tätigkeiten an der FHNW
Dozent am Institut für Medizintechnik und Medizininformatik
Lehre
Bachelor
- Technische Mechanik
- Biokompatible Werkstoffe
- Praktikum Materialprüfung
Master
- Biointerface Engineering
- Surface Characterization
- Materials Science
- Atomic View to Materials
- Materials Science and Biomaterials
- Guest lecturer Applications of Surface Science in Industry
- Block course Functional biocompatible materials for medical applications
Profil
- Member of the Swiss Physical Society (SPS) since 2000.
- Member of the Swiss Society for Biomaterials and Regenerative Medicine (SSB+RM) since 2008. Member of the Executive Committee since 2017.
- Member of the programme committee of the industrial conference [MEET THE EXPERT] Material and Surface Technology for Implants since 2010.
- M. Estermann, J. Waser, Ch. Schneider, A. Luu-Dinh, M. Schnieper, D. Kallweit, R. Krähenbühl, M. de Wild, R. Marek, Medical prostheses, medical osteosynthetic devices or hearing aids with security and/or identification elements, patent application, EP18164627.4 and EP18164630.8, 28.03.2018.
- W. Hoffmann, C. Döbeli, R. Santoro, D. Wendt, M. de Wild, Reactor device for mechanical loading of tissue specimens and/or engineered tissues, European Patent Office Munich, priority application, EP 14/169756, 23 May 2014.
- W. Hofstetter, E. Hunziker, M. de Wild, M. Wieland, Dental implant system
PCT patent application WO 2009/040124, priority 26.09.2007.
EP07 018 894.1, priority 26.09.2007
PCT/EP2008/008198, priority 26.09.2008
US12/680,015, priority 25.03.2010 - M. de Wild, F. Homann, Dental implant having a surface made of a ceramic material
European patent application EP 1982671, priority 19.04.2007. - S. Tosatti, M. Schuler, D. Trentin, M. de Wild, Cell selective implant surface with controlled release of bioactive agents, PCT patent application A16238EP, priority 11.01.2006. Pat No. 07405002.2-1219. European patent application EP 1 808 188, 05.01.2007.
- F. Grohmann, M. de Wild, M. Memmolo, Beschichtung von Teilen aus Titan oder einer Titan-Legierung zur Verhinderung von Kaltverschweissung, PCT patent application A05019053.7, priority 01.09. (2005). Coating for Parts Made of Titanium or the Alloy Thereof or Preventing Cold Welding, European patent application EP 1759722, priority 01.09. (2005).
- S. Berner, S. Schintke, L. Ramoino, M. de Wild, T. A. Jung, Method to induce and control a reversible structural transition in a molecular dipole layer, U.S. patent application (2003).
- M. Brunner, S. Berner, H. Suzuki and T.A. Jung, University of Basel, Production method for atomic and molecular patterns on surfaces and nanostructured devices, PCT patent application WO 02/086200 A1 (2001).
- O. Koudal, V. Kobbe, M. Brunner, B. Banholzer, Endress + Hauser Flowtec AG, Volume or mass flowmeter, PCT patent application 99102267.4-2204 (1999).
-
Keine peer-reviewed Inhalte verfügbar
-
Peer-reviewedGottsauner, M., Morawska, M. M., Tempel, S., Müller-Gerbl, M., Dalcanale, F., de Wild, M., & Ettl, T. (2024). Geometric cuts by an autonomous laser osteotome increase stability in mandibular reconstruction with free fibula grafts. A cadaver study. Journal of Oral and Maxillofacial Surgery, 82(2), 235–245. https://doi.org/10.1016/j.joms.2023.10.008
-
Peer-reviewedGottsauner, M., Morawska, M. M., Tempel, S., Müller-Gerbl, M., Dalcanale, F., de Wild, M., & Ettl, T. (2024). Geometric cuts by an autonomous laser osteotome increase stability in mandibular reconstruction with free fibula grafts. A cadaver study. Journal of Oral and Maxillofacial Surgery, 82(2). https://doi.org/10.1016/j.joms.2023.10.008
-
Peer-reviewedMaintz, M., Msallem, B., de Wild, M., Seiler, D., Herrmann, S., Feiler, S., Sharma, N., Dalcanale, F., Cattin, P., & Thieringer, F. M. (2023). Parameter optimization in a finite element mandibular fracture fixation model using the design of experiments approach. Journal of the Mechanical Behavior of Biomedical Materials, 144. https://doi.org/10.1016/j.jmbbm.2023.105948
-
Peer-reviewedZarean, P., Zarean, P., de Wild, M., Thieringer, F. M., Sharma, N., Seiler, D., & Malgaroli, P. (2023). Effect of printing parameters on mechanical performance of material-extrusion 3D-printed PEEK specimens at the point-of-care. Applied Sciences, 13(3), 1–15. https://doi.org/10.3390/app13031230
-
Peer-reviewedLee, S. S., Du, X., Smit, T., Bissacco, E. G., Seiler, D., de Wild, M., & Ferguson, S. J. (2023). 3D-printed LEGO®-inspired titanium scaffolds for patient-specific regenerative medicine. Biomaterials Advances, 154. https://doi.org/10.1016/j.bioadv.2023.213617
-
Peer-reviewedMaevskaia, E., Khera, N., Ghayor, C., Bhattacharya, I., Guerrero, J., Nicholls, F., Waldvogel, C., Bärtschi, R., Fritschi, L., Salamon, D., Özcan, M., Malgaroli, P., Seiler, D., de Wild, M., & Weber, F. E. (2023). Three-dimensional printed hydroxyapatite bone substitutes designed by a novel periodic minimal surface algorithm are highly osteoconductive. 3D Printing and Additive Manufacturing, 10(5), 905–916. https://doi.org/10.1089/3dp.2022.0134
-
Peer-reviewedde Wild, M., Zimmermann, S., Klein, K., Steffen, T., Schlottig, F., Hasler, C., & Rechenberg, B. v. (2023). Immediate stabilization of pedicle screws. Current Directions in Biomedical Engineering, 9(1). https://doi.org/10.1515/cdbme-2023-1004
-
Peer-reviewedMaintz, M., Seiler, D., Thieringer, F. M., & de Wild, M. (2022). Topology-optimized patient-specific osteosynthesis plates. Current Directions in Biomedical Engineering, 8(2), 177–180. https://doi.org/10.1515/cdbme-2022-1046
-
Peer-reviewedRohr, N., Brunner, C., Bellon, B., Fischer, J., & de Wild, M. (2022). Characterization of a cotton-wool like composite bone graft material. Journal of Materials Science: Materials in Medicine, 33(8). https://doi.org/10.1007/s10856-022-06682-3
-
Peer-reviewedLennart, R., Schuler, F., Gayral, T., de Wild, M., & Renaud, P. (2021). Development of models for additively manufactured actuators using compliant Wren mechanism. Precision Engineering, 72, 304–314. https://doi.org/10.1016/j.precisioneng.2021.05.002
-
Peer-reviewedMüller, S., Schwenk, T., de Wild, M., Dimitrou, D., & Rosso, C. (2021). Increased construct stiffness with meniscal repair sutures and devices increases the risk of cheese-wiring during biomechanical load-to-failure testing. Orthopaedic Journal of Sports Medicine, 9(6). https://doi.org/10.1177/23259671211015674
-
Peer-reviewedSimeunovic, S., Jung, C., Mory, D., Seiler, D., & de Wild, M. (2021). Investigating dry electro-chemical polishing of titanium structures. Current Directions in Biomedical Engineering, 7(2), 77–80. https://doi.org/10.1515/cdbme-2021-2020
-
Peer-reviewedSchuler, F., Dany, S., John, C., & de Wild, M. (2021). Exploitation of transition temperatures of NiTi- SMA by adjusting SLM parameters. Current Directions in Biomedical Engineering, 7(2), 61–64. https://doi.org/10.1515/cdbme-2021-2016
-
Peer-reviewedde Wild, M., Dietschy, A., Claudio, R., & Rosso, C. (2019). Three anchor concepts for rotator cuff repair in standardized physiological and osteoporotic bone: a biomechanical study. Journal of Shoulder and Elbow Surgery, 1–8. https://doi.org/10.1016/j.jse.2019.07.032
-
Peer-reviewedMüller, S., & de Wild, M. (2019). The new LassoLoop360° technique for biomechanically superior tissue grip. Knee Surgery, Sports Traumatology, Arthroscopy, 27(12), 3962–3969. https://doi.org/10.1007/s00167-019-05604-1
-
Peer-reviewedChen, T.-H., Ghayor, C., Siegenthaler, B., Schuler, F., Rüegg, J., de Wild, M., & Weber, F. E. (2018). Lattice Microarchitecture for Bone Tissue Engineering from Calcium Phosphate Compared to Titanium. Tissue Engineering. Part A, 24(19-20). https://doi.org/10.1089/ten.TEA.2018.0014
-
Peer-reviewedde Wild, M., Ghayor, C., Zimmermann, S., Rüegg, J., Nicholls, F., Schuler, F., Chen, T.-H., & Weber, F. E. (2018). Osteoconductive Lattice Microarchitecture for Optimized Bone Regeneration. 3D Printing and Additive Manufacturing, 6. https://doi.org/10.1089/3dp.2017.0129
-
Peer-reviewedHarrasser, N., de Wild, M., Gorkotte, J., Obermeier, A., & Feihl, S. (2016). Evaluation of calcium dihydroxide- and silver-coated implants in the rat tibia. Journal of Applied Biomaterials & Functional Materials, 14(4), e441–e448. https://doi.org/10.5301/jabfm.5000323
-
Peer-reviewedHarrasser, N., Gorkotte, J., Obermeier, A., Feihl, S., Straub, M., Slotta-Huspenina, J., von Eisenhart-Rothe, R., Moser, W., Gruner, P., de Wild, M., Gollwitzer, H., & Burgkart, R. (2016). A new model of implant-related osteomyelitis in the metaphysis of rat tibiae. BMC Musculoskeletal Disorders. https://doi.org/10.1186/s12891-016-1005-z
-
Peer-reviewedde Wild, M., Vogt, N., Wozniak, K., & Salito, A. (2016). Biocompatible wear-resistant thick ceramic coating. Current Directions in Biomedical Engineering, 2(1), 31–34. https://doi.org/10.1515/cdbme-2016-0010
-
Peer-reviewedde Wild, M., Zimmermann, S., Rüegg, J., Schumacher, R., Fleischmann, T., Ghayor, C., & Weber, F. E. (2016). Influence of microarchitecture on osteoconduction and mechanics of porous titanium scaffolds generated by selective laser melting. 3D Printing and Additive Manufacturing, 3(3), 143–151. https://doi.org/10.1089/3dp.2016.0004
-
Peer-reviewedBraissant, O., Chavanne, P., de Wild, M., Pieles, U., Stevanovic, S., Schumacher, R., Straumann, L., Wirz, D., Gruner, P., Bachmann, A., & Bonkat, G. (2015). Novel microcalorimetric assay for antibacterial activity of implant coatings. The cases of silver‐doped hydroxyapatite and calcium hydroxide. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 103(6), 1161–1167. https://doi.org/10.1002/jbm.b.33294
-
Peer-reviewedde Wild, M., Molenberg, A., Amacher, F., & Chris, B. (2015). Investigation of structural resorption behavior of biphasic bioceramics with help of gravimetry, μCT, SEM, and XRD. Journal of Biomedical Materials Research. Part B: Applied Biomaterials, 1–8. https://doi.org/10.1002/jbm.b.33419.
-
Peer-reviewedKarfeld-Sulzer, L. S., Ghayor, C., & de Wild, M. (2015). N-methyl Pyrrolidone/Bone Morphogenetic Protein-2 Double Delivery with In Situ Forming Implants. Journal of Controlled Release, 203, 181–188. http://hdl.handle.net/11654/11924
-
Peer-reviewedJung, C., Mathes, S., Bono, E., Walker, C., Kessler, A., Straumann, L., de Wild, M., & de Haller, E. B. (2015). Cell viability on titanium implant surfaces modified with antibacterial copper. European Cells and Materials, 29, 24. http://hdl.handle.net/11654/11820
-
Peer-reviewedde Wild, M., Hoffmann, W., Feliciano, S., Martin, I., & Wendt, D. (2015). Novel perfused compression bioreactor system as an in vitro model to investigate fracture healing. Frontiers in Bioengineering and Biotechnology, 3(10), 1–6. https://doi.org/10.3389/fbioe.2015.00010
-
Peer-reviewedRosso, C., Müller, S., Buckland, D. M., Schwenk, T., Zimmermann, S., de Wild, M., & Valderrabano, V. (2014). All-inside meniscal repair devices compared with their matched inside-out Vertical mattress suture repair. Introducing 10,000 and 100,000 loading cycles. The American Journal of Sports Medicine, 42(9), 2226–2233. https://doi.org/10.1177/0363546514538394
-
Peer-reviewedBormann, T., Beckmann, F., Schinhammer, M., Deyhle, H., de Wild, M., & Müller, B. (2014). Assessing the grain structure of highly X-ray absorbing metallic alloys. International Journal of Materials Research, 105(7), 692–701. https://doi.org/10.3139/146.111052
-
Peer-reviewedBormann, T., Schulz, G., Deyhle, H., Beckmann, F., de Wild, M., Küffer, J., Münch, C., Hoffmann, W., & Müller, B. (2014). Combining micro computed tomography and three-dimensional registration to evaluate local strains in shape memory scaffolds. Acta Biomaterialia, 10(2), 1024–1034. https://doi.org/10.1016/j.actbio.2013.11.007
-
Peer-reviewedHoffmann, W., Bormann, T., Rossi, A., Müller, B., Schumacher, R., Martin, I., de Wild, M., & Wendt, D. (2014). Rapid prototyped porous nickel–titanium scaffolds as bone substitutes. Journal of Tissue Engineering, 5. https://doi.org/10.1177/2041731414540674
-
Peer-reviewedBormann, T., Müller, B., Schinhammer, M., Kessler, A., Thalmann, P., & de Wild, M. (2014). Microstructure of selective laser melted nickel–titanium. Materials Characterization, 94, 189–202. https://doi.org/10.1016/j.matchar.2014.05.017
-
Peer-reviewedde Wild, M., Meier, F., Bormann, T., Howald, C., & Müller, B. (2014). Damping of selective-laser-melted NiTi for medical implants. Journal of Materials Engineering and Performance, 23(7), 2614–2619. https://doi.org/10.1007/s11665-014-0889-8
-
Peer-reviewedHofstetter, W., Sehr, H., de Wild, M., Portenier, J., Gobrecht, J., & Hunziker, E. B. (2013). Modulation of human osteoblasts by metal surface chemistry. Journal of Biomedical Materials Research Part A, 101A(8), 2355–2364. https://doi.org/10.1002/jbm.a.34541
-
Peer-reviewedde Wild, M., Schumacher, R., Kyrill, M., Schkommodau, E., Thoma, D., Bredell, M., Kruse, A., Grätz, K., & Weber, F. (2013). Bone regeneration by the osteoconductivity of porous titanium implants manufactured by selective laser melting: A histological and µCT study in the rabbit. Tissue Engineering. Part A, 19(23-24), 2645–2654. https://doi.org/10.1089/ten.TEA.2012.0753
-
Peer-reviewedBormann, T., Schumacher, R., Müller, B., Mertmann, M., & de Wild, M. (2012). Tailoring selective laser melting process parameters for NiTi implants. Journal of Materials Engineering and Performance, 21(12), 2519–2524. https://doi.org/10.1007/s11665-012-0318-9
-
Peer-reviewedJung, C., Budesa, B., Fässler, F., Uehlinger, R., Müller, T., Schaffner, P., Bläsi, S., & de Wild, M. (2012). Reinigungseffektivität und Kavitationsrauschpegel bei Ultraschall-unterstützter wässriger Reinigung von Medizinprodukten. Tagungsband der 38. Deutschen Jahrestagung für Akustik DAGA 2012 in Darmstadt, 437–438. https://doi.org/10.26041/fhnw-10180
-
Peer-reviewedSchuler, M., Hamilton, D. W., Kunzler, T. P., Sprecher, C. M., de Wild, M., Brunette, D. M., Textor, M., & Tosatti, S. G. P. (2009). Comparison of the response of cultured osteoblasts and osteoblasts outgrown from rat calvarial bone chips to nonfouling KRSR and FHRRIKA‐peptide modified rough titanium surfaces. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 91B(2), 517–527. https://doi.org/10.1002/jbm.b.31425
-
Peer-reviewedSchuler, M., Kunzler, T. P., de Wild, M., Sprecher, C. M., Trentin, D., Brunette, D. M., Textor, M., & Tosatti, S. G. P. (2009). Fabrication of TiO2‐coated epoxy replicas with identical dual‐type surface topographies used in cell culture assays. Journal of Biomedical Materials Research Part A, 88A(1), 12–22. https://doi.org/10.1002/jbm.a.31720
-
Peer-reviewedSchuler, M., Owen, G. Rh., Hamilton, D. W., de Wild, M., Textor, M., Brunette, D. M., & Tosatti, S. G. P. (2006). Biomimetic modification of titanium dental implant model surfaces using the RGDSP-peptide sequence. A cell morphology study. Biomaterials, 27(21), 4003–4015. https://doi.org/10.1016/j.biomaterials.2006.03.009
-
Peer-reviewedFerguson, S. J., Broggini, N., Wieland, M., de Wild, M., Rupp, F., Geis-Gerstorfer, J., Cochran, D. L., & Buser, D. (2006). Biomechanical evaluation of the interfacial strength of a chemically modified sandblasted and acid-etched titanium surface. Journal of Biomedical Materials Research Part A, 78A(2), 291–297. https://doi.org/10.1002/jbm.a.30678
-
Keine peer-reviewed Inhalte verfügbar
-
Peer-reviewedde Wild, M. (2017). 3D printing of magnesium implants. 5. Jahrestreffen des Virtuellen Helmholtz Instituts. http://hdl.handle.net/11654/25789
-
Peer-reviewedGruner, P., Moser, W., Wittwer, M., & de Wild, M. (2017). An inorganic antimicrobial surface modification for orthopaedic implants. European Cells and Materials. http://hdl.handle.net/11654/25773
-
Peer-reviewedMarek, R., de Wild, M., Wohlfender, F., & Wiese, B. (2017). Customizing the microstructure in three-dimensional Mg structures. 9th Biometal Symposium on Biodegradable Metals for Biomedical Applications. http://hdl.handle.net/11654/25772
-
Peer-reviewedde Wild, M. (2017). Smart Implants, breakout session. KTI MedTec Day. http://hdl.handle.net/11654/25792
-
Peer-reviewedde Wild, M. (2017). Antibakterielle Implantatoberflächen. Innovative Surfaces @ Swiss MedTech Expo. http://hdl.handle.net/11654/25771
-
Peer-reviewedSchuler, F., Renaud, P., & de Wild, M. (2017). Biopsy needle drive actuators made from NiTi. Annual Meeting of the German Society for Biomaterials. http://hdl.handle.net/11654/25805
Kontakt
-
Prof. Dr. Michael de Wild
- Dozent
- Telefonnummer
- +41 61 228 56 49 (Direkt)
- bWljaGFlbC5kZXdpbGRAZmhudy5jaA==
- Hochschule für Life Sciences FHNW
Institut für Medizintechnik und Medizininformatik
Hofackerstrasse 30
4132 Muttenz
Institut für Medizintechnik und Medizininformatik
Fachhochschule Nordwestschweiz FHNW
Hochschule für Life Sciences
Institut für Medizintechnik und Medizininformatik
Hofackerstrasse 30
4132 Muttenz
- Telefon
- +41 61 228 54 19
- ZXJpay5zY2hrb21tb2RhdUBmaG53LmNo