Hauptinhalt überspringenNavigation überspringenFooter überspringen
Logo der Fachhochschule Nordwestschweiz
Studium
Weiterbildung
Forschung und Dienstleistungen
Internationales
Die FHNW
De
Standorte und KontaktBibliothek FHNWKarriere an der FHNWMedien

      Logo der Fachhochschule Nordwestschweiz
      • Studium
      • Weiterbildung
      • Forschung und Dienstleistungen
      • Internationales
      • Die FHNW
      De
      Standorte und KontaktBibliothek FHNWKarriere an der FHNWMedien
      Module
      Machine Learning

      Machine Learning

      Number
      ml
      ECTS
      3.0
      Level
      advanced
      Overview
      Machine Learning (ML) methods allow the analysis of structured data in order to make predictions, classifications, clusterings or recommendations for various purposes. Over the last ten years, Machine Learning has become a key technology for analyzing the growing data volume. Today, the applications of ML methods are omnipresent. Virtually everybody uses them on a daily basis, mostly without noticing them. In business applications they are becoming an important factor for success and therefore a must-have competence for every data scientist. Machine Learning methods can be categorized into several sub-areas. In this module we discuss a representative selection together with some important general concepts:
        Supervised Learning:
      • Regression: linear regression and regularization
      • Classification: logistic regression, support vector machines, decision trees
      • Neural networks
        Unsupervised Learning:
      • Dimensionality reduction (principal component analysis, etc.)
      • Clustering (K-means, Gaussian Mixture Model, etc.)
        Model Selection:
      • Cross-validation methods
      • ML system design (learning curve, information criteria, etc.)
      • Anomaly detection
      Learning Objectives
      • The students know basic ML methods, the related algorithms and the most important field of application.
      • They are able to implement ML algorithms and apply them to simple but practical problems.
      • The students can visualize and interpret the data and the results of the analysis.
      • They are also able to quantitatively analyze and evaluate the chosen ML model.
      • The students are familiar with a suitable machine learning library and they can use appropriate optimization algorithms.
      Previous knowledge
      • Introduction in Data Science with Python (dsp)
      • Advanced Course in Analysis (vana)
      • Discrete Stochastic (dist)
      • English level B2 (e.g. passed module ten1)
      Exam format
      Continuous assessment grade
      Additional information
      This module is available as an online course (with additional, graded in-house assignments).
      (German Version)

      Studium

      Angebot

      • Studium
      • Weiterbildung
      • Forschung & Dienstleistungen

      Über die FHNW

      • Hochschulen
      • Organisation
      • Leitung
      • Facts and Figures

      Hinweise

      • Datenschutz
      • Accessibility
      • Impressum

      Support & Intranet

      • IT Support
      • Login Inside-FHNW

      Member of: