Hauptinhalt überspringenNavigation überspringenFooter überspringen
Logo der Fachhochschule Nordwestschweiz
Studium
Weiterbildung
Forschung und Dienstleistungen
Internationales
Die FHNW
De
Standorte und KontaktBibliothek FHNWKarriere an der FHNWMedien

      Logo der Fachhochschule Nordwestschweiz
      • Studium
      • Weiterbildung
      • Forschung und Dienstleistungen
      • Internationales
      • Die FHNW
      De
      Standorte und KontaktBibliothek FHNWKarriere an der FHNWMedien
      Module
      Effiziente Machine Learning Algorithmen

      Efficient Machine Learning Algorithms

      Number
      eml
      ECTS
      3.0
      Specification
      Analyze and implement efficient ML data structures and algorithms
      Level
      Advanced
      Content

      Machine learning algorithms convert mathematical models into code and thus enable the extraction of patterns from data, which can be used for predictions and other purposes. Computational efficiency is of great importance, since finding optimal model coefficients and hyperparameters often requires a large number of computational operations.


      The implementation of machine learning algorithms is in essence the efficient use of numerical operations on suitable data structures. On the one hand, theoretical considerations regarding the number of operations and runtime can be made. On the other hand, practical framework conditions, such as the physical distribution of data across different storage media, the transport costs of data and computational instructions must be taken into account.

      Learning outcomes

      Fundamentals of efficient numerical computation

      Students understand theoretical runtime calculations and can use them as a basis for decision-making when choosing algorithms. They can analyse algorithms for their runtime. They are familiar with computer infrastructure and architectures. They know how computational operations can be optimally exploited and how this affects runtimes in practice.


      Efficient algorithms and data structures

      Students are familiar with methods and data structures of efficient programming:


      Dynamic programming, greedy algorithms, memoisation, metaheuristics (genetic, ant colony, particle swarm optimisation, ... ), linear programming, and binary search trees.


      Efficient implementation of ML algorithms and their analysis

      Students can perform efficient implementations of standard ML algorithms: random forests, MLP, kMeans, kNN, ... and estimate and measure their computational efficiency / runtime.

      Evaluation
      Mark
      Built on the following competences

      Foundation in Machine Learning, Foundation in Programming, Programming Algorithms, Software Construction

      Modultype
      Portfolio Module
      (German Version)

      Studium

      Angebot

      • Studium
      • Weiterbildung
      • Forschung & Dienstleistungen

      Über die FHNW

      • Hochschulen
      • Organisation
      • Leitung
      • Facts and Figures

      Hinweise

      • Datenschutz
      • Accessibility
      • Impressum

      Support & Intranet

      • IT Support
      • Login Inside-FHNW

      Member of: