Hauptinhalt überspringenNavigation überspringenFooter überspringen
Logo der Fachhochschule Nordwestschweiz
Studium
Weiterbildung
Forschung und Dienstleistungen
Internationales
Die FHNW
De
Standorte und KontaktBibliothek FHNWKarriere an der FHNWMedien

      Logo der Fachhochschule Nordwestschweiz
      • Studium
      • Weiterbildung
      • Forschung und Dienstleistungen
      • Internationales
      • Die FHNW
      De
      Standorte und KontaktBibliothek FHNWKarriere an der FHNWMedien
      Module
      Diskrete Stochastik

      Discrete Stochastics

      Number
      dist
      ECTS
      3.0
      Level
      intermediate
      Overview
      This course deals with models of probability and statistics suitable for modeling random processes like lottery, roulette, waiting queues, polls etc. These models allow for predictions and estimations either with exact calculations or with the help of computerized simulation.
        Topics (The order and the emphasis are left to the lecturer)
      • A. Elementary probability theory and combinatorics Random events, Laplace probability space, combinatorics, Kolmogorov’s axiom system, conditional probability, statistical independence, Bayes’ rule
      • B. Random variables and discrete distributions Random variables, expectation value, variance, binomi-al/Poisson/geometric/hypergeometric distribution,
      • C. Aspects of continuous distributions Normal/exponential distribution
      • D. Generating of random numbers and simulation Linear congruential generator, Inverse transform sampling, Monte-Carlo-simulation
      • E. Discrete Markov processes Markov chain, transition matrix, transition graph, stationary probability
      • F. Queueing theory Kendall’s notation, properties of M|M|s|c-queues, simulation
      • G. Aspects of descriptive statistics Median, quartiles, Box plot
      Learning objectives
      • The students know the mathematical foundations for describing random events: probabilities, Laplace probability space, combinatorics, random variables, distributions, expectation value, variance, standard deviation
      • They know the main distributions and which processes can be modeled with these distributions.
      • They know how random numbers may be generated and how computer-ized simulation works.
      • They know what a (homogenous) Markov chain is. They are able to model such chains with transition matrices and transition graphs. They are able to determine the long term behavior of a Markov chain.
      • They know models for waiting queues and are able to determine proper-ties like the mean waiting time of such queues via exact computations or simulation.
      • They are able to compute and interpret the main statistical measures
      .
      Previous knowledge
    • Mathematical foundations of computer science (mgli)
    • Linear algebra und geometrie (lag)
    • Introduction to analysis (eana)
    • Exam format
      Continuous assessment grade with final written exam
      (German Version)

      Studium

      Angebot

      • Studium
      • Weiterbildung
      • Forschung & Dienstleistungen

      Über die FHNW

      • Hochschulen
      • Organisation
      • Leitung
      • Facts and Figures

      Hinweise

      • Datenschutz
      • Accessibility
      • Impressum

      Support & Intranet

      • IT Support
      • Login Inside-FHNW

      Member of: