Prof. Dr. Matthias Templ
Prof. Dr. Matthias Templ
Tätigkeiten an der FHNW
Dozent
-
No peer reviewed content available
-
Peer reviewedThees, O., Novak, J., & Templ, M. (2024). Evaluation of synthetic data generators on complex tabular data. In J. Domingo-Ferrer & M. Önen (Eds.), Privacy in statistical databases. International Conference, PSD 2024, Antibes Juan-les-Pins, France, September 25–27, 2024, Proceedings (pp. 194–209). Springer. https://doi.org/10.1007/978-3-031-69651-0_13
-
Peer reviewedGussenbauer, J., Templ, M., Fritzmann, S., & Kowarik, A. (2024). Simulation of calibrated complex synthetic population data with XGBoost. Algorithms, 17(6). https://doi.org/10.3390/a17060249
-
Peer reviewedGozzi, C., Templ, M., & Buccianti, A. (2024). Robust CoDA balances and the role of the variance in complex riverine geochemical systems. Journal of Geochemical Exploration, 259. https://doi.org/10.1016/j.gexplo.2024.107438
-
Peer reviewedTempl, M. (2024). Robust multipe imputation with GAM. Statistics and Computing, 34. https://doi.org/10.1007/s11222-024-10429-1
-
Peer reviewedDegenfellner, J., & Templ, M. (2024). Modeling bee hive dynamics. Assessing colony health using hive weight and environmental parameters. Computers and Electronics in Agriculture, 218(C). https://doi.org/10.1016/j.compag.2024.108742
-
Peer reviewedTempl, M., & Ulmer, M. (2024). The impact of misclassifications and outliers on imputation methods. Journal of Applied Statistics, 51(14), 2894–2928. https://doi.org/10.1080/02664763.2024.2325969
-
Peer reviewedFilzmoser, P., & Templ, M. (2023). Prof. Rudolf Dutter (1946-2023): Ein Nachruf. Austrian Journal of Statistics, 52(3), 143–144. https://doi.org/10.17713/ajs.v52i3.1736
-
Templ, M. (2023). Visualization and imputation of missing values. With applications in R. Springer. https://doi.org/10.1007/978-3-031-30073-8
-
Peer reviewedTempl, M. (2023). Enhancing precision in large-scale data analysis: an innovative robust imputation algorithm for managing outliers and missing values. Mathematics, 11(12). https://doi.org/10.3390/math11122729
-
Peer reviewedTempl, M., & Templ, B. (2022). Statistical analysis of chemical element compositions in food science: problems and possibilities. Molecules, 26(19), 5752. https://doi.org/10.3390/molecules26195752
-
Peer reviewedTempl, M., Gozzi, C., & Buccianti, A. (2022). A new version of the Langelier-Ludwig square diagram under a compositional perspective. Journal of Geochemical Exploration, 242(107048). https://doi.org/10.1016/j.gexplo.2022.107084
-
Peer reviewedTempl, M., Kanjala, C., & Siems, I. (2022). Privacy of study participants in open-access health and demographic surveillance system data. Requirements analysis for data anonymization. JMIR Public Health and Surveillance, 8(9). https://doi.org/10.2196/34472
-
Peer reviewedTempl, M., & Sariyar, M. (2022). A systematic overview on methods to protect sensitive data provided for various analyses. International Journal of Information Security, 21, 1233–1246. https://doi.org/10.1007/s10207-022-00607-5
-
Peer reviewedvan den Boogaart, K. G., Filzmoser, P., Hron, K., Templ, M., & Tolosana-Delgado, R. (2021). Classical and robust regression analysis with compositional data. Mathematical Geosciences, 53, 823–858. https://doi.org/10.1007/s11004-020-09895-w
-
Templ, M. (2021). Artificial neural networks to impute rounded zeros in compositional data. In P. Filzmoser, K. Hron, J. A. Martín-Fernández, & J. Palarea-Albaladejo (Eds.), Advances in compositional data analysis. Festschrift in honour of Vera Pawlowsky-Glahn (pp. 163–187). Springer. https://doi.org/10.1007/978-3-030-71175-7_9
-
Peer reviewedTempl, B., Templ, M., Barbieri, R., Meier, M., & Zufferey, V. (2021). Coincidence of temperature extremes and phenological events of grapevines. Oeno One, 55(1), 367–383. https://doi.org/10.20870/OENO-ONE.2021.55.1.3187
-
Peer reviewedLubbe, S., Filzmoser, P., & Templ, M. (2021). Comparison of zero replacement strategies for compositional data with large numbers of zeros. Chemometrics and Intelligent Laboratory Systems, 210, 104248. https://doi.org/10.1016/J.CHEMOLAB.2021.104248
-
Templ, M. (2021). Can we ignore the compositional nature of compositional data by using deep learning aproaches? In C. Perna, N. Salvati, & F. Schirripa Spagnolo (Eds.), Book of short papers SIS 2021 (pp. 243–248). Pearson. https://irf.fhnw.ch/handle/11654/43326
-
Peer reviewedRosadi, D., Setiawan, E. P., Templ, M., & Filzmoser, P. (2020). Robust covariance estimators for mean-variance portfolio optimization with transaction lots. Operations Research Perspectives, 7(100154). https://doi.org/10.1016/j.orp.2020.100154
-
Peer reviewedTempl, M. (2020). Modeling and prediction of the impact factor of journals using open-access databases. Austrian Journal of Statistics, 49(5), 35–58. https://doi.org/10.17713/ajs.v49i5.1186
-
Peer reviewedTempl, M., & Templ, B. (2020). Analysis of chemical compounds in beverages – Guidance for establishing a compositional analysis. Food Chemistry, 325. https://doi.org/10.1016/j.foodchem.2020.126755
-
Peer reviewedTempl, M., & Heitz, C. (2020). Fleet management in free-floating bike sharing systems using predictive modelling and explorative tools. Austrian Journal of Statistics, 49(2), 53–69. https://doi.org/10.17713/ajs.v49i2.1114
-
Peer reviewedMeindl, B., & Templ, M. (2019). Feedback-based integration of the whole process of data anonymization in a graphical interface. Algorithms, 12(9), 1–20. https://doi.org/10.3390/a12090191
-
Peer reviewedTempl, B., Mozes, E., Templ, M., Földesi, R., Szirák, Á., Báldi, A., & Kovács-Hostyánszki, A. (2019). Habitat-dependency of transect walk and pan trap methods for bee sampling in farmlands. Journal of Apicultural Science, 63(1), 93–115. https://doi.org/10.2478/jas-2019-0014
-
Peer reviewedKreutzmann, A.-K., Pannier, S., Rojas-Perilla, N., Schmidt, T., Templ, M., & Tzavidis, N. (2019). The R package emdi for estimating and mapping regionally disaggregated indicators. Journal of Statistical Software, 91(7), 1–33. https://doi.org/10.18637/jss.v091.i07
-
Peer reviewedTempl, M., Gussenbauer, J., & Filzmoser, P. (2019). Evaluation of robust outlier detection methods for zero-inflated complex data. Journal of Applied Statistics, 47(7), 1144–1167. https://doi.org/10.1080/02664763.2019.1671961
-
Filzmoser, P., Hron, K., & Templ, M. (2018). Applied compositional data analysis. With worked examples in R (p. 17). Springer Cham. https://doi.org/10.1007/978-3-319-96422-5_2
-
Peer reviewedFacevicova, K., Hron, K., Todorov, V., & Templ, M. (2018). General approach to coordinate representation of compositional tables. Scandinavian Journal of Statistics, 45(4), 879–899. https://doi.org/10.1111/sjos.12326
-
Peer reviewedTempl, B., Fleck, S., & Templ, M. (2017). Change of plant phenophases explained by survival modeling. International Journal of Biometeorology, 61, 881–889. https://doi.org/10.1007/s00484-016-1267-z
-
Peer reviewedTempl, B., Templ, M., Filzmoser, P., Lehoczky, A., Bakšienè, E., Fleck, S., Gregow, H., Hodzic, S., Kalvane, G., Kubin, E., Palm, V., Romanovskaja, R., Vucˇetic´, V., žust, A., & Czúcz, B. (2017). Phenological patterns of flowering across biogeographical regions of Europe. International Journal of Biometeorology, 61, 1347–1358. https://doi.org/10.1007/s00484-017-1312-6
-
Templ, M. (2017). Statistical disclosure control for microdata. Methods and applications in R. Springer Cham. https://doi.org/10.1007/978-3-319-50272-4
-
Peer reviewedTempl, M., Hron, K., & Filzmoser, P. (2017). Exploratory tools for outlier detection in compositional data with structural zeros. Journal of Applied Statistics, 44(4), 734–752. https://doi.org/10.1080/02664763.2016.1182135
-
Peer reviewedTempl, M., Meindl, B., Kowarik, A., & Dupriez, O. (2017). Simulation of synthetic complex data. The R package simPop. Journal of Statistical Software, 79(10), 1–38. https://doi.org/10.18637/jss.v079.i10
-
Peer reviewedTempl, M., & Todorov, V. (2016). The software environment R for official statistics and survey methodology. Austrian Journal of Statistics, 45(1), 97–124. https://doi.org/10.17713/ajs.v45i1.100
-
Peer reviewedHron, K., Menafoglio, A., Templ, M., Hrůzová, K., & Filzmoser, P. (2016). Simplicial principal component analysis for density functions in Bayes spaces. Computational Statistics & Data Analysis, 94, 330–350. https://doi.org/10.1016/j.csda.2015.07.007
-
Peer reviewedHuber, J., Pötsch, B., Gantschacher, M., & Templ, M. (2016). Routine treatment of cervical cytological cell changes. Geburtshilfe Und Frauenheilkunde, 76(10), 1086–1091. https://doi.org/10.1055/s-0042-105286
-
Peer reviewedTempl, M., Hron, K., Filzmoser, P., & Gardlo, A. (2016). Imputation of rounded zeros for high-dimensional compositional data. Chemometrics and Intelligent Laboratory Systems, 155, 183–190. https://doi.org/10.1016/j.chemolab.2016.04.011
-
Peer reviewedFacevicova, K., Hron, K., Todorov, V., & Templ, M. (2016). Compositional tables analysis in coordinates. Scandinavian Journal of Statistics, 43(4), 962–977. https://doi.org/10.1111/sjos.12223
-
Peer reviewedKowarik, A., & Templ, M. (2016). Imputation with the R package VIM. Journal of Statistical Software, 74(7), 1–16. https://doi.org/10.18637/jss.v074.i07
-
No peer reviewed content available
-
Saracino, R. (2023). Identifizierung von Auffälligkeiten in sicherheitsrelevanten Meldungen [Hochschule für Wirtschaft FHNW]. https://irf.fhnw.ch/handle/11654/42057
-
Atputharasa, S. (2023). Erfassung und Analyse von Personendatenbearbeitungen im schulischen Unterrichtskontext [Hochschule für Wirtschaft FHNW]. https://irf.fhnw.ch/handle/11654/42233
Contact
-
Prof. Dr. Matthias Templ
- Lecturer, Institut for Competitiveness and Communication
- Telephone
- +41 62 957 30 27 (direct)
- bWF0dGhpYXMudGVtcGxAZmhudy5jaA==
- FHNW University of Applied Sciences and Arts Northwestern Switzerland
School of Business
Riggenbachstrasse 16
CH – 4600 Olten