Skip to main contentSkip to navigationSkip to footer
Logo of the University of Applied Sciences and Arts Northwestern Switzerland
Degree Programmes
Continuing Education
Research and Services
International
About FHNW
DeEn
Locations and ContactFHNW LibraryMedia Relations

      Logo of the University of Applied Sciences and Arts Northwestern Switzerland
      • Degree Programmes
      • Continuing Education
      • Research and Services
      • International
      • About FHNW
      DeEn
      Locations and ContactFHNW LibraryMedia Relations
      Schools
      FHNW School of Engineering and Environment
      Institutes
      Research Projects
      SAPE – a modular printing system

      SAPE – a modular printing system

      The modular printing system SAPE raises the benchmark in terms of printing speed and quality.

      Objectives

      This project had two primary objectives: firstly the aim was to significantly reduce the waiting time between the print order and the start of printing. Secondly, a light, compact printing unit was to be developed which was to be modular in structure.

      Background

      Radex AG manufacturers makes industrial printing machines for label and textile printing. Image data has to be rendered prior to printing. The image material is processed for each print head. The images are cut in strips to the width of the print heads and their position is shifted as necessary. The colours are also separated according to the ink colours available for printing. The pixels required for printing are then read out of the processed image data and re-sorted for each specific print head, after which they are loaded onto the print head.

      Result

      In order to reduce the waiting time that elapses between the print order and actual printing (up to several hours in the case of very large images), much of the computational burden was transferred from the computer (host/server) to a field programmable gate array (FPGA) and parallelised. This not only accelerated image processing but also enabled miniaturisation of the electronics. In conjunction with new production techniques such as 3D printing and bionic design, this contributes to creating a compact and lightweight print module. The weight of the print module was reduced by more than 2/3 as compared to similar units on the market, while at the same time, performance was increased by a factor of two in terms of printing quality and speed.

      In addition to developing the digital circuit for data transfer to the print heads in the FPGA, the project also involved the development of an analogue fire-pulse circuit to control the print jets. Furthermore, an algorithm was developed to optimise positioning of the medium as a FPGA. Both tasks were carried out at the FHNW Institute of Microelectronics. A subproject involving the analysis and optimisation of fluidics processing was also carried out at the Institute of Thermal and Fluid Engineering. Staff at Radex carried out the mechanical work required to make the print module as well as developing the circuit boards and all software solutions.

      Information

      table_scrollable_animation_gif

      Client

      Radex AG

      Execution

      FHNW Institute for Sensors and Electronics, FHNW Institute of Thermo- and Fluidengineering

      Research sponsor

      Innosuisse (Kommission für Technologie und Innovation KTI)

      About FHNW

      Institute for Sensors and ElectronicsInstitute of Thermal and Fluid Engineering
      Michael Pichler

      Prof. Michael Pichler

      Programme Head MAS Microelectronics, Head of Microelectronics Team

      Telephone

      +41 56 202 75 26

      E-mail

      michael.pichler@fhnw.ch

      Address

      Fachhochschule Nordwestschweiz FHNW Hochschule für Technik und Umwelt Klosterzelgstrasse 2 5210 Windisch

      ht_ins_gz_projekt_teaserht_ins_ime_projekt_teaser_ENht_ins_ise_projekt_teaserht_ins_itfe_projekt_teaserht_ins_itfe_forschung_simulationsmethodenht_for_asic-fpgaht_ins_itfe_fluidengineering_projekte

      What we offer

      • Degree Programmes
      • Continuing Education
      • Research and Services

      About FHNW

      • Schools
      • Organisation
      • Management
      • Facts and Figures

      Information

      • Data Protection
      • Accessibility
      • Imprint

      Support & Intranet

      • IT Support
      • Login Inside-FHNW

      Member of: