Hauptinhalt überspringenNavigation überspringenFooter überspringen
Logo der Fachhochschule Nordwestschweiz
Studium
Weiterbildung
Forschung und Dienstleistungen
Internationales
Die FHNW
De
Standorte und KontaktBibliothek FHNWKarriere an der FHNWMedien

      Logo der Fachhochschule Nordwestschweiz
      • Studium
      • Weiterbildung
      • Forschung und Dienstleistungen
      • Internationales
      • Die FHNW
      De
      Standorte und KontaktBibliothek FHNWKarriere an der FHNWMedien
      Life S...
      Institut für Medizintechnik und...
      Funktionale Materialien u...
      3D-printed biodegradable metallic Mg...

      3D-printed biodegradable metallic Mg scaffolds

      In this project, we show 3D-magnesium-structures produced by the additive manufacturing technology selective laser melting (SLM).

      Due to the production flexibility this technology is already used to manufacture permanent, patient-specific, metallic implants made of cpTi. However, only a couple of SLM-Mg studies have been published at that time. Patient-specific, temporary solutions could be offered to the surgeon for the benefit of the patient.

      3D-printed freeform magnesium structures, produced by Selective Laser Melting. From Customizing the microstructure in three-dimensional Mg structures

      Link to research paper.

      a) SEM image of Mg powder, b) simple 3D CAD-model, c) rectangular object with dimension 5.5 x 5.5 x 2.5 mm3 and d) 3D SLM-cube with 5.5 mm edge length and 500 µm thick orthogonal channels in all three spatial directions. From Degradable Mg scaffolds produced by selective laser melting

      Link to abstract.

      The surgical application of permanent implants, e.g. osteosynthesis plates to stabilize fractured bones during healing, may be accompanied by disadvantages on the long-term, in particular when being placed in children or adolescent where impaired growth can result. Furthermore, implant dislocations, implant-associated infections or injuries of nerves and vessels can appear as side effects. Secondary surgeries to remove the implant after successful bone healing and to clinically eradicate this artificial foreign body often are expensive and complex. Resorbable implants, however, degenerate in-vivo, the foreign material is absorbed and no secondary surgery is necessary. Still, the mechanical strength of existing bioresorbable ceramic or polymeric biomaterials is too low for load-bearing applications. On the contrary, magnesium could be used as a biomaterial for the production of metallic, resorbable implants with sufficient mechanical properties.

      Publikationen

      • Safety recipient for controlled selective laser melting of magnesium
      • Degradable Mg scaffolds produced by selective laser melting
      • Customizing the microstructure in three-dimensional Mg structures
      • Preliminary microstructural investigation of Mg cubes produced by SLM

      Referenzen

      • R. Marek, F. Wohlfender, B. Wiese, M. de Wild, Customizing the microstructure in three-dimensional Mg structures, proceeding of the 9th Biometal Symposium on Biodegradable Metals for Biomedical Applications, Met-4, 27. European Cells and Materials Meeting Abstracts 2017, Collection 4; Biometal 11 (2017).
      • F. Wohlfender, N. Vogt, J. Rüegg, R. Marek, M. de Wild, Effect of process parameters on hardness of SLM-Mg material, Biomed Tech 2016 61, s30 (2016).
      • J. Rüegg, S. Böhringer, A. Kessler, R. Schumacher, E. Schkommodau, M. de Wild, Degradable Mg scaffolds produced by selective laser melting, Front. Bioeng. Biotechnol. Conference Abstract: 10th World Biomaterials Congress, http://www.frontiersin.org/10.3389/conf.FBIOE.2016.01.00962/event_abstract.
      • F. Wohlfender, S. Saxer, B. Wiese, J. Rüegg, A. Dietschy, R. Schumacher, M. de Wild, Preliminary microstructural investigation of Mg produced by SLM, European Cells and Materials 32. Suppl. 1, 24 (2016).
      • S. Böhringer, A. Kessler, J. Rüegg, R. Schumacher, E. Schkommodau, M. de Wild, Safety recipient for controlled selective laser melting of magnesium, European Cells and Materials, 30; Suppl. 3, 4 (2015).

      Partner

      Finanzierung

      Zusammenarbeit in Forschung und Dienstleistungen

      Life Sciences
      Implantatentwurf und -herstellungFunktionale Materialien
      Michael de Wild

      Prof. Dr. Michael de Wild

      Dozent

      Telefonnummer

      +41 61 228 56 49

      E-Mail

      michael.dewild@fhnw.ch

      Adresse

      Hochschule für Life Sciences FHNW Institut für Medizintechnik und Medizininformatik Hofackerstrasse 30 4132 Muttenz

      projektFunktionale Materialien und OberflächenImplantatentwurf und -herstellung

      Hochschule für Life Sciences FHNW

      Fachhochschule Nordwestschweiz FHNW
      Hochschule für Life Sciences

      Hofackerstrasse 30

      4132 Muttenz

      E-Mailinfo.lifesciences@fhnw.ch

      Angebot

      • Studium
      • Weiterbildung
      • Forschung & Dienstleistungen

      Über die FHNW

      • Hochschulen
      • Organisation
      • Leitung
      • Facts and Figures

      Hinweise

      • Datenschutz
      • Accessibility
      • Impressum

      Support & Intranet

      • IT Support
      • Login Inside-FHNW

      Member of: